Char-Lynn® Hydraulikmotoren mit Axialverteilerventil

Katalog 11-878/D November 1997

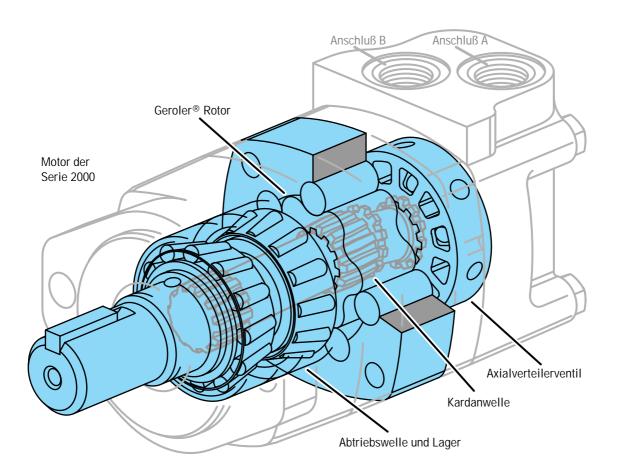
Hydraulikmotoren Serie 2000, 4000, 6000 und 10000

Hydraulikmotoren mit Axialverteilerventil der Eaton Corporation, einem weltweit führenden Hersteller von Hydraulikprodukten für Mobil-Anwendungen.

In den späten 50er Jahren wurde aus einem Pumpen-Gerotor-Element, das aus einem inneren Zahnkranz und einem dazu passenden Rotor mit Außenverzahnung bestand, der heutige Hydraulikmotor für niedrige Drehzahlen und hohes Drehmoment entwickelt. Während der Innenzahnkranz (Stator) mit dem Gehäuse fest verbunden ist. erzeugt die Zufuhr von Öl einen Druck, der bewirkt, daß sich der Rotor um die Mittelachse des Motors herum abwälzt. Dieser sich langsam drehende Rotor, der über eine verzahnte Kardanwelle direkt mit der Abtriebswelle verbunden ist, führte zum eigentlichen Char-Lynn® Orbit® Motor. Einige Jahre nach Einführung dieses ursprünglichen Char-Lynn-Orbit-Motors ging $ein\,anderer\,Original motor\,in\,Produktion.$ Dieser Motor besaß Rollen, die in den Stator eingelegt waren. Dieses Element wurde als Geroler® bezeichnet und ist ein registriertes Warenzeichen der Eaton Corporation.

Seit diesen Anfangsjahren wurden an dem Geroler-Motor viele Konstruktionsänderungen vorgenommen, um diese Geroler-Motoren zu den besten zu machen, die die Branche zu bieten hat. Machen Sie sich ein Bild davon, wie einfach die nachstehend abgebildeten Geroler-Motoren mit Axialverteilerventil funktionieren. Beachten Sie bitte auch alle Folgeseiten über die hochwertigen Char-Lynn-Motoren mit Axialverteilerventil der Hydraulics Division der Eaton Corporation.

Das Geroler®-Verdrängungsprinzip

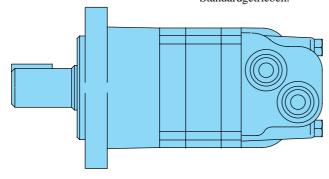

Hydraulikmotoren mit Geroler-Elementen besitzen ein hohes Start- und Betriebsdrehmoment. Das Geroler-Element reduziert Reibungsverluste auf ein Minimum und führt zu einem besseren Wirkungsgrad mit dem Vorteil einer gleichmäßigen Wellenrotation selbst bei sehr geringen Drehzahlen. Die Drehrichtung der Motor-Abtriebswelle kann direkt durch Änderung der Flußrichtung des Eingangs-/Ausgangsstromes umgekehrt werden, wobei für beide Drehrichtungen ein gleiches Drehmoment erzeugt wird. Die verfügbaren Baugrößen ermöglichen für alle Motortypen eine große Vielfalt von Drehzahlen und Drehmomenten.

Das Axialverteilerventil

Axialverteilerventils besteht in der Verteilung der Druckflüssigkeit zu den Geroler-Kammern. Die druckkompensierte Dichtfläche des Ventiles reduziert Ölverluste auf ein Minimum. Char-Lynn-Motoren mit Axialverteilerventil können in geschlossenen und offenen Kreisläufen eingesetzt werden. Das patentierte druckkompensierte verschleißarme Axialverteilerventil sorgt für Spitzenleistungen.

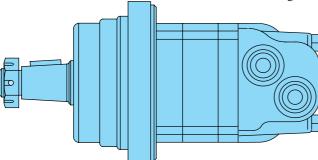
Lager für hohe Beanspruchungen

Rollenlager lassen hohe Radialbelastungen zu, die an die Drehmomentbereich des Motors angepaßt sind. Vorsatzlager oder andere mechanische Bauteile werden hierdurch überflüssig, wodurch Kosten gesenkt werden und die Motoren auch als Fahrantrieb an schweren Fahrzeugen eingesetzt werden können.

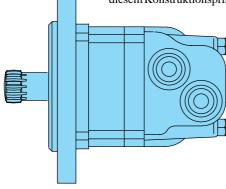

Konstruktionsmerkmale

Char-Lynn-Hydraulikmotoren bieten ein hohes Maß an Flexibilität. Alle Motoren mit Axialverteilerventil sind in verschiedene Ausführungsvariationen:

- Schluckvolumen (Geroler-Dicke)
- Abtriebswelle
- Ohne Welle und Lager (Bearingless Motor)
- Hydraulikanschluß
- Montageflansch
- Sonstige Sonderausführungen


Standardmotor

Der Montageflansch des Standardmotors befindet sich so nahe wie möglich an der Abtriebswelle. Bei dieser Montageart wird der Motor optimal gegen die Wellenbelastung abgestützt. Dieser Montageflansch paßt ferner zu vielen mechanischen Standardgetrieben.


Radmotor

Der Montageflansch des Radmotors befindet sich nahe der Gehäusemitte, so daß der Motor ganz oder teilweise innerhalb der Rad- oder Trommelnabe untergebracht werden kann. Die Krafteinwirkung erfolgt somit direkt radial auf die Wellenlagerung, wodurch eine optimale Lebensdauer der Lager erreicht wird. Dieser Radmotor-Montageflansch sorgt für eine hohe Anwendungsflexibilität.

Bearingless Motor

Der Bearingless Motor besitzt dieselben Antriebskomponenten wie die Standard- und Radmotoren (mit der Ausnahme, daß der Motor ohne Abtriebswelle, Lager und Lagergehäsue zusammengebaut ist). Der Bearingless Motor ist besonders für Anwendungen mit Getrieben, Windenantreiben, Haspel- und Trommelantrieben geeignet. Die Anwendungskomponenten für Bearingless Motoren müssen für die Aufnahme der Motor-Kardanwelle mit einer Innenverzahnung versehen sein. Hydraulikmotoren mit diesem Konstruktionsprinzip bringen beträchtliche Kosteneinsparungen.

Serie 2000

Geroler® Element	9 Baugrößen
Schluckstrom	75 I/min Kont.**
	115 I/min Interm.
Drehzahl	bis 924 1/min.
Druckdifferenz	200 bar Kont.
	310 bar Interm.
Drehmoment	845 Nm Kont.
	900 Nm Interm.

Schluckvolumen in cm3/U [in3/r]

- 80 [4.9] • 100 [6.2]

- 130 [8.0] 160 [9.6] 195 [11.9]
- 245 [14.9]
- 305 [18.7]
- 395 [24.0]
- 490 [29.8]

Montageflansch

- 4-Loch (Standard);82,5 [3,25] Zentrierduchm. und 13,59 [,535] Lochdurchm. auf 106,4 [4.19] Lochkreis
- 4-Loch (Rad) 125 [4.25] Zentrierdurchm. und 13,79 [.545] Lochdurchm. auf160,0 [5.81] Lochkreis

- 4-Loch (Bearingless); 101,6 [4.00] Zentrierdurchm. und 13,59 [.535] Lochdurchm. auf 127,0 [5.00] Lochkreis
 4-Loch Magneto; 82,5 [3.25] Zentrierdurchm. und 13,59 [.535] Zentrierdurchm. auf 106,4 [4.19] Lochkreis
 2-Loch (SAE A) (Standard); 82,5 [3.25] Zentrierdurchm. und 13,59 [.535] Lochdurchm. auf 106,4 [4.19] Lochkreis
 2-Loch (SAE B); 101,6 [4.00] Zentrierdurchm. und 14,27 [.562] Lochdurchm. auf 146,0 [5.75] Lochkreis
- Abtriebswelle Bearingless
- Bearingless
 32 mm zyl. mit Paßfeder, Gewindebohrung M8x1,25-6H und max. Kupplungslänge von 56,4 [2.22]
 32 mm zyl. mit Paßfeder, Gewindebohrung M8x1,25-6H und max. Kupplungslänge von 56,4 [2,22] (Korrosionsgesch.)
 25 mm zyl. mit Paßfeder, Gewindebohrung M8x1,25-6H und max. Kupplungslänge von 38,1 [1.50]
 1" zyl. mit Scheibenfeder, Gewindebohrung 1/4-20 und max. Kupplungslänge von 38,4 [1.51]

- 1-1/4" zyl. mit Paßfeder, Gewindebohrung 3/8-16 und max. Kupplungslänge von 47,3 [1.86] • 1" Vielkeilwelle 6 Zähne SAE 6B, Gewindebohrung 1/4-20
- 1-1/4" Vielkeilwelle 14 Zähne, Gewindebohrung 3/8-16
- 1-1/4" konisch mit Paßfeder und Mutter

Hydraulikanschlüsse

- Flansch mit M 10x1,5-6H Montagegewingde (3) und Leckolanschluß G 1/4 (BSP)

 Flansch mit M 10x1,5-6H Montagegewingde (3) und Leckolanschluß G 1/4 (BSP)
- 7/8-14 O-Ring (versetzt) mit Leckölanschluß 7/16-20 O-Ring
- Flansch mit 3/8-16 UNC Montagegewinde (3) und Leckölanschluß
- 1-1/16—12 O-Ring (180° gegenüberliegend) mit Leckölanschluß 7/16-20 O-Ring
- 7/8-14 O-Ring (Endanschlüsse) mit Leckölanschluß 7/16-20 O-Ring (hinten)

- Sonderausführung
 Viton® Wellendichtring
 Viton® Dichtungen
- Free Running Geroler
- Drehzahlsensor
- Zweigang-Ausführung
- 2-Wege-Spülventil für beide Arbeitsrichtungen
- Korrosionsschutz
- Dichtungsschutzpaket

** Kontinuierlich — (Kont.) Dauerbetrieb: Der Motor kann mit diesen Daten kontinuierlich gefahren werden. Intermittierend — (Interm.) Intermittierender Betrieb:

Zul. Betriebsbereich während 10% jeder Minute

Viton® ist ein geschützter Markenname der Dupont Corp.

⁴

Serie 4000

Geroler® Element 9 Baugrößen Flow LPM [GPM] 95 I/min Kont.** 150 I/min Interm.* Drehzahl bis 868 1/min. Druckdifferenz 200 bar Kont. 310 bar Interm. Drehmoment 970 Nm Kont. 1180 Nm Interm

Schluckvolumen in cm3/U [in3/r]

- 110 [6.7] 130 [7.9]
- 160 [9.9]
- 205 [12.5] 245 [15.0] 310 [19.0]
- 395 [24.0]
- 495 [30.0]
- 625 [38.0]
- Montageflansch

 4 Loch ISO 125 [4.92] Zentrierdurchm. und 14,27 [.562] Lochdurchm. auf 160 [6.299] Lochkreis
- 4 Loch (SAE B) (Standard); 10,6 [4.00] Zentrierdurchm. und 14,7 [.58] Montageschlitze auf 127,0 [5.00] Lochkreis
 4 Loch (SAE C) (Standard); 127,0 [5.50] Zentrierdurchm. und 14,3 [.56] Lochdurchm. auf 161,9 [6.38] Lochkreis
 4 Loch (Rad); 139,7 [5.50] Zentrierdurchm. und 14,3 [.56] Lochdurchm. auf 161,9 [6.38] Lochkreis
- 4 Loch (Bearingless); 127,0 [5.00] Zentrierdurchm. und 14,7 [.562] Lochdurchm. auf 161,9 [6.38] Lochkreis
- Abtriebswelle Bearingless
- 40 mm zyl. mit Paßfeder, Gewindebohrung M12x1,75-6H
- 1-1/4" zyl. mit Paßfeder, Gewindebohrung 3/8-16 und max. Kupplungslänge von 53,1 [2.09]
- 1-1/4" Vielkeilwelle 14 Zahne mit 38,1 [1.50] nutzbarer Keillange und max. Kupplungslänge 53,1 [2.09]
 1-1/2" Vielkeilwelle 17 Zähne mit 31,2 [1.23] nutzbarer Keillange
 1-5/8" konisch mit Paßfeder und und geschlitzter Sechskantmutter 1-1/4-18 UNEF
- Hydraulikanschlüsse
- G 3/4 (BSP) O-Ring mit Leckölanschluß G 1/4 (BSP) O-Ring und Rückschlagventil
- M22x1,5-6H (ISO) O-Ring mit LeckölanschlußM12x1,5-6H O-Ring und Spülventil
- 1-1/16-12 O-Ring mit Leckölanschluß 7/16-20 O-Ring und Rückschlagventill
 3/4" (SAE) 4-Loch-Flansch mit Leckölanschluß 7/16-20 O-Ring und Rückschlagventill
 7/8-14 O-Ring mit Leckölanschluß 9/16-18 O-Ring mit Spülventil
- Sonderasuführung
- Viton Wellendichtring
- Viton Dichtungen
- 2-Wege-Spülventil für beide Arbeitsrichtungen
 1-Weg-Spülventil für rechtsdrehende Abtriebswe
- 1-Weg-Spülventil für linksdrehende Abtriebswelle
- Korrosionsschutz

^{**} Kontinuierlich — (Kont.) Dauerbetrieb: Der Motor kann mit diesen Daten kontinuierlich gefahren werden.

^{*} Intermittierend — (Interm.) Intermittierender Betrieb: Zul. Betriebsbereich während 10% jeder Minute

Serie 6000

Geroler® Element 7 Baugrößen Schluckstrom 150 I/min Kont.** 225 I/min Interm.* Drehzahl..... bis 866 1/min.

Druckdifferenz 200 bar Kont. 310 bar Interm.

Drehmoment 1685 Nm Kont.

2240 Nm Interm.

Schluckvolumen in cm³/U [in³/r]
• 195 [11.9]

- 245 [15.0<u>]</u>
- 310 [19.0]
- 390 [23.9] 490 [30.0] 625 [38.0]

- 985 [60.0]
- Montageflansch
- 4 Loch (Baeringless): 127.0 [5.00] Zentrierdurchm. und 14,3 [.56] Lochdurchm. auf 161,9 [6.38] Lochkreis
 4 Loch (SAE CC) (Standard): 127,0 [5.00] Zentrierdurchm. und 14,3 [.56] Lochdurchm. auf 161,9 [6.38] Lochkreis
 4 Loch (Rad): 139,7 [5.50] Zentrierdurchm. und 14,3 [.56] Lochdurchm. auf 184,1 [7.25] Lochkreis
- Abtriebswelle

- Abit letswere

 Bearingless

 40 mm z/l, mit Paßfeder, Gewindebohrung M12x1,75-6H

 1-1/2" zyl. mit Paßfeder, Gewindebohrung 3/8-16 und max. Kupplungslänge 56,7 [2.23]

 1-1/2" Vielkeilwelle 17 Zähne mit 40,3 [1.59] nutzbarer Keillange und Gewindebohrung 3/8-16

 1-3/4" konisch mit Paßfeder und geschlitzter Sechskantmutter 1,1/4-18 UNEF

- G 1 (BSP) O-Ring mit Leckölanschluß G 1/4 (BSP) O-Ring und Rückschlagventil
 1-5/16-12 O-Ring mit Leckölanschluß 7/16-20 O-Ring und Spülventil
 3/4" 4 Loch Flansch mit Leckölanschluß 7/16-20 O-Ring und Rückschlagventil
- Sonderausführung
 Viton® Wellendichtring

- Viton® Dichtungen2-Wege-Spülventil für beide Arbeitsrichtungen
- Korrosionsschutz

^{**} Kontinuierlich — (Kont.) Dauerbetrieb: Der Motor kann mit diesen Daten kontinuierlich gefahren werden.

^{*} Intermittierend — (Interm.) Intermittierender Betrieb: Zul. Betriebsbereich während 10% jeder Minute.

Geroler® Element 4 Baugrößen 170 l/min Kont.** Schluckstrom

265 I/min Interm.* Drehzahl bis 784 1/min.

Druckdifferenz 200 bar Kont. 275 bat Interm.

Drehmoment 2700 Nm Kont.

3440 Nm Interm.

Schluckvolumen in cm3/U [in3/r]

- 480 [29.2]
- 665 [40.6]
- 940 [57.4]

- Montageflansch

 4 Loch (Bearingless); 152,4 [6.00] Zentrierdurchm. und 20,88 [.522] Lochdurchm. 228,6 [9.00] Lochkreis

 4 Loch (Standard); 127,0 [5.00] Zentrierdurchm. und 17,02 [.670] Lochdurchm. auf 161,9 [6.37] Lochkreis

 4 Loch (Rad); 177,8 [7.00] Zentrierdurchm. und 17,02 [.670] Lochdurchm. auf 209,5 [8.25] Lochkreis
- Abtriebswelle

- Abritetsweite

 Bearingless

 2-1/4* zyl. mit Paßfeder, Gewindebohrung 1/2-20 und max. Kupplungslänge von 97,5 [3.84]

 2-1/8* Vielkeilwelle 16 Zähne mit 52,1 [2.05] nutzbarer Keillange und Gewindebohrung 1/2-20 UNEF

 2-1/4* kohlsch mit Paßfeder und geschlitzter Sechskantenmutter 1-1/2-18 UNEF

- 2-1/4* konjsch mit Patifeder und geschlitzter Sechskantenm Hydraulikanschlüsse
 1-5/16-12 O-ring mit 9/16-18 O-Ring
 1-1/4* geleilter Flansch mit Leckölanschluß 9/16-18 O-Ring Sonderausführung
 Viton® Wellendichtring
 Viton® Dichtungen

- Zweigang-Ausführung
- Korrosionsschutz

^{**} Kontinuierlich — (Kont.) Dauerbetrieb: Der Motor kann mit diesen Daten kontinuierlich gefahren werden.

^{*} Intermittierend — (Interm.) Intermittierender Betrieb: Zul. Betriebsbereich während 10% jeder Minute.

Flexibilität bei der Konstruktion

Char-Lynn-Motoren sind eigens für hohe Drehmomente bei niedrigen Drehzahlen konzipiert. Aus einer kleinen Bauform wird eine große Leistung erzeugt. Dieser Leistungsvorteil liefert dem Konstrukteur ein insgesamt kompaktes Produkt, das die hohen Druckbereiche ermöglicht, die heutzutage für Hydraulikkomponenten typisch sind.

Char-Lynn-Hydraulikmotoren mit Axialverteilerventil ermöglichen dem Konstrukteur, die Leistung dort einzusetzen, wo sie benötigt wird. Die hohe Leitungsdichte dieser Motoren eliminiert eine Vielzahl von Einbauproblemen. Ferner können die Motoren direkt am anzutreibenden Gerät, getrennt von der Hydraulikpumpe montiert werden, so daß andere mechanische Verbindungen, wie z. B. Ketten, Kettenräder, Riemen, Riemenscheiben, Zahnräder und Gelenkwellen entfallen können. Mehrere Motoren können von derselben Hydraulikpumpe angetrieben und in Serien- oder Parallelschaltung betrieben werden.

Lebensdauer

Die Bauweise und besondere Art der Verarbeitung der drei wesentlichen Komponenten des Antriebsstrangs, nämlich Verteilerventil, Kardanwelle und Abtriebswelle, geben diesen Motoren eine hohe Lebensdauer. Infolgedessen sind diese Motoren unter hohen Hydraulikdrücken einsetzbar. Andere Baumerkmale, wie z.B. die stabilen Kegelrollenlager, ergänzen die robuste Ausführung.

Leistungsmerkmale

Bei der Auslegung der Leistung dieser Motoren wurde darauf geachtet, daß bei niedrigeren Drehzahlen und geringerem Schluckstrom höhere Drücke und ein größeres Drehmoment möglich sind. Die Leistungsdaten zeigen den kompletten Schluckstrombereich (bis hinunter zu 1 l/min bzw. 1/4 GPM) und den kompletten Drehzahlbereich (entsprechend der Anwendung bis hinunter zu 1 Umdrehung pro Minute).

Drehzahlbereich

Char-Lynn-Motoren arbeiten mit niedrigen Drehzahlen, die auch bei wechselnder Belastung nahezu konstant bleiben. Die Wellendrehzahl kann mit einfachen, preiswerten Reglern ruckfrei, leichtgängig und wirtschaftlich in beiden Drehrichtungen reguliert werden. Die Richtungsumkehr erfolgt unverzüglich, wobei für beide Drehrichtungen ein gleiches Drehmoment erzeugt wird.

Zuverlässige Leistung

Die sehr präzise Fertigung der Teile und die einzigartige druckkompensierte Konstruktion des Axialverteilerventils sorgen für beständige, zuverlässige Leistung und eine lange Lebensdauer auch unter wechselnden Bedingungen.

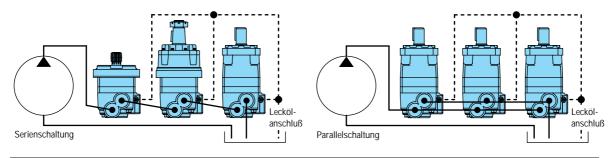
Betriebssicherheit

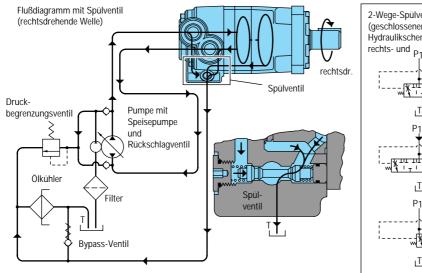
Char-Lynn-Motoren sind in sich abgeschlossen, wobei Hydraulikflüssigkeit für die Schmierung sorgt. Sie sind komplett abgedichtet, so daß sie auch unter widrigen Umgebungen, wie z. B. Staub, Schmutz, Dampf, Wasser und Hitze, sicher und verläßlich arbeiten und eine zuverlässige Leistung bringen.

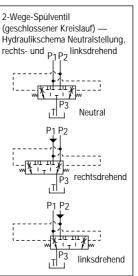
Hohe Wirkungsgrade

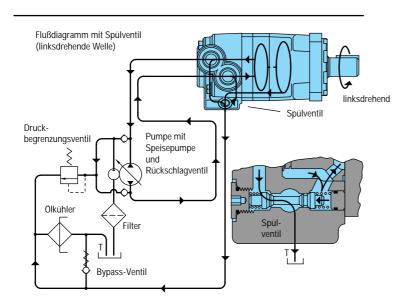
Char-Lynn-Motoren mit Axialverteilerventil haben hohe Wirkungsgrade und bringen eine hohe Leistung für den zugeführten Druck und Schluckstrom. Der hohe mechanische Wirkungsgrad ermöglicht, ein vorgegebenes Drehmoment mit einem Motor kleinerer Baugröße zu erreichen.

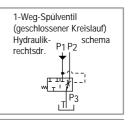
Der volumetrische Wirkungsgrad ist hoch, und die Drehzahl ist bei Laständerungen verhältnismäßig konstant.

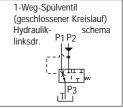

 $Alles \ in \ allem \ bedeuten \ diese \ Wirkungsgrade \ eine \ geringere \ W\"{a}rmeentwicklung \ im \ Hydrauliksystem.$




Serie 2000, 4000, 6000


Leckölanschluß und Spülventil


Viele Hydrauliksysteme können von einer Leckölabführung profitieren. Auch Char-Lynn-Motoren bieten die Möglichkeit einer externen Leckölabführung. Eine separate Leckölabführung hat u. a. folgenden Vorteil: Verunreinigungen werden aus dem System herausgespült. Die Gehäusespülung trägt auch zur Kühlung des Systems und zur Verringerrung des Gehäusedrucks bei, wodurch die Lebensdauer der Motordichtung verlängert wird. Bei angeschlossener Leckölleitung kann auch der Druck in angebauten Getrieben (Anwendungen mit Bearingless Motoren) kontrolliert werden. Für Systemanwendungen mit erhöhtem Kühl- und Spülbedarf ist bei Motoren der Serie 2000, 4000 und 6000 ein Spülventil als Sonderausstattung lieferbar.



Hochdruckwellendichtung

Diese erprobte Hochdruckwellendichtung besitzt eine patentierte Dichtlippe, die bei hohen Radialkräften entsprechend der Wellendurchbiegung nachgibt und hierdurch ein besseres Dichtungsverhalten erzeugt. Außerdem halten diese Dichtringe einem Rücklaufdruck stand von bis zu 140 bar [2000 PSI] bei Serie 2000, 100 bar [1500 PSI] bei Serie 4000, 70 bar [1000 PSI] bei Serie 6000 sowie 20 bar [300 PSI] bei Serie 10000.

Interne Rückschlagventile

Ein internes Rückschlagventil führt den Leckölstrom zur Niederdruckseite des Motors. Diese Rückschlagventile sind in den meisten Anwendungen einsetzbar. Die Motoren verfügen ferner über einen externen Leckölanschluß für den Fall, daß die folgenden kontinuierlichen Rücklaufdrücke überschritten werden: 140 bar [2000 PSI] bei Serie 2000, 100 bar [1500 PSI] bei Serie 4000, 70 bar [1000 PSI] bei Serie 6000 sowie 20 bar [300 PSI] bei Serie 10000.

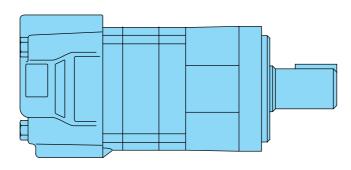
Drehzahlsensoren Serie 2000

Zur Überwachung der Motordrehzahl sind Motoren der Serie 2000 mit einem robusten Digitalsensor verfügbar. In Zusammenspiel mit der Fahrzeugelektrik ist diese Option ideal für Anwendungen, die eine genaue Ermittlung der Drehzahl erfordern.

Korrosionsschutz

Motoren der Serie 2000, 4000, 6000 und 10000 sind mit einer korrosionsbeständigen Beschichtung für den Einsatz unter rauhen Arbeitsbedingungen, wie z.B. Salz, Wasser und verschiedene Chemikalien erhältlich. Diese Beschichtung bewährt sich speziell in den Bereichen Seefahrt, Nahrungsmittel- und Fischereiindustrie, in Autowaschanlagen sowie in der Landwirtschaft. Durch die Beschichtung der Welle werden Dichtungsschäden durch ätzende und säurehaltige Stoffe eliminiert. Der Korrosionsschutz der Motoren ist in zwei Ausführungen erhältlich: nur mit einer korrosionsgeschützten Abtriebswelle oder zusätzlich mit einer Beschichtung des gesamten Motors.

Inhaltsverzeichnis


000
, 52
55-67
,55
,
,
, 71

Die in diesem Katalog angegebenen Abmessungen und technische Daten sind nicht streng verbindlich. Maßänderungen bedingt durch technische Weiterentwicklung sowie Änderungen technischer Daten sind möglich. Im Auftragsfall fordern Sie bitte verbindlichen Maßzeichnungen bei Ihrer zuständigen Eaton-Vertretung an.

^{*} Für die Bestellung einer speziellen Ausführung fragen Sie bitte Ihre zuständige Eaton-Vertretung.

Technische Daten Serie 2000

Technische Daten — Serie 2000

Schluckvolumen cm³/U [in³/r]		80 [4.9]	100 [6.2]	130 [8.0]	160 [9.6]	195 [11.9]	245 [14.9]	305 [18.7]	395 [24.0]	490 [29.8]
Max. Drehzahl (1/min)	Kontinuierl.	799	742	576	477	385	308	246	191	153
Schluckstrom `	Intermittier.	908	924	720	713	577	462	365	335	230
Schluckstrom I/min	Kontinuierl.	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]
[GPM]	Intermittier.	75 [20]	95 [25]	95 [25]	115 [30]	115 [30]	115 [30]	115 [30]	130 [35]	115 [30]
Drehmoment Nm [lb-in]	Kontinuierl.	235 [2065]	295 [2630]	385 [3420]	455 [4040]	540 [4780]	660 [5850]	765 [6750]	775 [6840]	845 [7470]
Welle, Durchmesser 1-1/4" bzw. 32 mm	Intermittier.	345 [3035]	445 [3950]	560 [4970]	570 [5040]	665 [5890]	820 [7250]	885 [7820]	925 [8170]	930 [8225]
D	Kontinuierl.	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	155 [2250]	120 [1750]
Druckdifferenz bar [PSI] Welle, Durchmesser	Intermittier.	310 [4500]	310 [4500]	310 [4500]	260 [3750]	260 [3750]	260 [3750]	240 [3500]	190 [2750]	140 [2000]
1-1/4" bzw. 32 mm	Spitze	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	225 [3250]	170 [2500]

Maximaler Gehäusedruck ohne Leckölabführung * — 140 bar [2000 PSI]

Ein maximales Drehmoment bei gleichzeitiger hoher Drehzahl ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb siehe Leistungsdate auf Seite12-16.

* Bei einem kontinuierlichen Rücklaufdruck von über 140 bar [2000 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen sind so zu montieren, daß das Motorgehäuse stets gefüllt ist.

Maximaler Eingangsdruck — 310 bar [4500 PSI]. Die Druckdifferenzwerte (siehe Tabelle oben) dürfen nicht überschritten werden.

* Maximaler Rücklaufdruck — 310 bar [4500 PSI]. Die Druckdifferenzwerte (siehe Tabelle oben) dürfen nicht überschritten werden. Druckdifferenz — Differenz zwischen Eingangs- und Rücklaufdruck.

Kontinuierlicher Betrieb — Der Motor kann mit diesen Daten im Dauerbetrieb gefahren werden.

Intermittierender Betrieb — Zul. Betriebsbereich während 10% jeder Minute.

Spitzenbetrieb — Zul. Betriebsbereich während 1% jeder Minute.

Empfehlung für Drückflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl mit einer Viskosität nicht unter 13 cSt bei Betriebstemperatur (siehe Seite 69).

Empfehlung für max. Systemtemperatur — 82° C [180° F]

Empfehlung für Ölfilterung — Entsprechend ISO Reinheitsklasse 18/13.

Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30% der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

Die Motoren laufen in allen für sie vorgesehenen $Drehzal\text{-} und \, Drehmoment bereichen \, mit \, einem$ $hohen Wirkungsgrad. \ Zum Erreichen einer$ maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

> 100 cm³/U [6.2 in³/r] Druckdifferenz bar [PSI]

80 cm³/U [4.9 in³/r] Druckdifferenz bar [PSI]

[500] [1000] [1500] [2000] [2500] [3000] [3500] [4000] [4500] 35 70 105 140 170 205 240 275 310

		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	
	[.25] , 95	[140] 15 4	[260] 30 2				
	[.5] 1,9	[150] 15 13	[300] 35 9	[620] 70 5	[940] 105 2		
	[1] 3,8	[170] 20 35	[390] 45 34	[830] 95 31	[1210] 135 28	[1570] 175 23	
GPIMI	[2] 7,5	[170] 20 73	[390] 45 71	[830] 95 68	[1220] 140 63	[1590] 180 59	
om i/min പ്രചയ	[4] 15	[170] 20 148	[380] 45 145	[820] 90 141	[1240] 140 136	[1640] 185 131	
ОП	[6]	[160]	[380]	[820]	[1260]	[1670]	

		35	70	105	140	170	205	240	2/5	310			
	[.25]	[210] 25	[420] 45										
	,95	3	1	F= 401									
	[.5] 1,9	[250] 30 17	[500] 50 8	[740] 85 3									
	[1]	[330]	[670]	[990]	[1300]	[1550]	[1800]	[1950]	[2110]				
		35	75	110	145	175	205	220	240				
	3,8	44	40	37	34	28	22	14	2				
∑	[2]	[330]	[670] 75	[995] 110	[1310] 150	[1580] 180	[1840] 210	[2100] 235	[2365] 265	[2630] 295			
GP	7,5	35 90	85	81	78	72	65	230 57	∠65 49	295 42			
Schluckstrom I/min [GPM]	[4]	[325]	[670]	[1005]	[1330]	[1620]	[1920]	[2200]	[2480]	[2765]			
m/	15	35 182	75 176	115 170	150 166	185 159	215 152	250 140	280 128	310 117			
Ε		[320]	_	[1010]	[1340]	[1655]	[1975]	[2270]	[2570]	[2880]			
tro	[6]	35	[665] 75	115	150	185	225	255	290	325			
cks	23	273	267	259	254	246	238	223	207	192			
μlα	[8]	[310]	[660]	[1015]	[1345]	[1685]	[2020]	[2330]	[2640]	[2960]			
Sc	30	35 365	75 375	115 349	150 341	190 333	230 325	265 306	300 286	335 266			
	[10]	[300]	[650]	[1010]	[1350]	[1700]	[2050]	[2370]	[2690]	[3010]			
		35	75	115	155	190	230	270	305	340			
	38	456	448	439	429	420	411	388	364	341			
	[12]	[285]	[640] 70	[1005] 115	[1350] 155	[1705] 195	[2065] 235	[2390] 270	[2715] 305	[3035] 345			
	45	547	537	530	516	507	497	470	442	415			
	[14]	[270]	[625]	[990]	[1340]	[1705]	[2065]	[2395]	[2720]	[3030]			
		30	70	110	150	195	235	270	305	340			
	53	638	629	622	603	593	584	553	521	490			
	[16]	[255] 30	[610] 70	[975] 110	[1330] 150	[1690] 190	[2055] 230	[2385] 270	[2700] 305	[2995] 340			
	61	729	720	714	689	679	670	635	599	564			
	[18]	[230]	[590]	[955]	[1310]	[1680]	[2025]	[2355]	[2660]	[2935]			
	68	25 818	65 810	110 795	150 775	190 765	230 756	265 717	300 677	330 638			
	[20]	[210]	[570]	[930]	[1290]	[1645]	[1985]	[2305]	[2600]	[2845]			
		25	65	105	145	185	225	260	295	320			
	76	908	901	880	861	851	842	799	755	712			
	[570]) Dreh	momer	t [lb-in]			K	ontin	nuierli	ich			
	65 901	}	Nm zahl 1/		\mathcal{I}				nittier				
	- 501				-		- 1	пспп	IIIIICI	CHU			

	,95	L	4	2								
	[.5]	ı	[150] 15	[300] 35	[620] 70	[940] 105						
	1,9	L	13	9	5	2						
	[1]		[170] 20	[390] 45	[830] 95	135	[1570] 175	210	240			
	3,8	ŀ	35	34	31	28	23	15	6		_	
PM]	[2]	ı	[170] 20	[390] 45	95	140	[1590] 180	215	250	[2520] 285	[2810] 315	355
9	7,5	ŀ	73	71	68	63	59	51	38	24	14	4
Schluckstrom I/min [GPM]	[4]	ı	[170] 20	[380] 45	90	140	[1640] 185	225	270	[2750] 310	[3120] 355	[3490] 395
٦.	15	ŀ	148	145	141	136	131	121	104	94	80	69
stror	[6]	ı	[160] 20	[380] 45	90	140	[1670] 190	235	280	[2880] 325	[3280] 370	[3680] 415
Š	23	ŀ	222	219	215	209	202	192	172	163	149	134
schlu	[8]	ı	[150] 15	[370] 40	[810] 90	140	[1700] 190	240	290	[2990] 340	[3420] 385	[3840] 435
0,	30	ŀ	297	294	288	281	273	261	243	231	216	200
	[10]	ı	[140]	[368]		[1270] 145	[1720]	[2160] 245		[3020]	[3440]	[3850] 435
	38	l	15 371	40 90	90 362	354	195 344	330	295 316	340 300	390 283	266
	[12]	I	[120]	[350]	[800]		[1730]			[3070]	[3510]	[3950]
	45	ı	15 445	40 442	90 436	145 427	195 415	245 399	295 389	345 369	395 350	445 332
	[14]	Ī	[110]	[330]	[800]	[1260]	[1740]	[2180]	[2630]	[3070]	[3500]	[3940]
	53	l	10 519	35 516	90 509	140 500	195 486	245 469	295 463	345 437	395 417	445 378
	[16]	Ī	[90]	[320]			[1720]				[3500]	[3940]
	61	ı	10 594	35 591	90 583	140 573	195 558	245 540	295 537	345 506	395 485	445 463
	[18]	ľ	[70]	[300]			[1700]				[3460]	[3900]
	68	ı	10 668	35 665	85 657	140 646	190 630	240 611	290 609	340 574	390 552	440 529
	[20]	ŀ	[60]	[280]			[1630]			[2980]	[3440]	[3830]
		ı	5	30	80	135	185	235	290	335	390	435
	76	ŀ	742	739	731	715	703	684	662	643	619	595
	[22]	ı	[40] 5	[260] 30	[720] 80	135	[1620] 185	235	280	[2930] 330	[3360] 380	
	83	ŀ	816	813	805	794	777	758	749	712	687	
	[24]	ı	[20] 1,0	[230] 230	[690]	[1140] 130	[1540] 175	[2020] 230		[2900]	[3340] 375	
	91	ı	890	887	80 879	868	852	834	280 814	330 782	754	
	[25]	Ī		[220]	[670]		[1560]			[2890]		
	95			25 924	75 916	125 905	175 890	225 873	275 846	325 817		

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

Die Motoren laufen in allen für sie vorgesehenen Drehzal- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

130 cm³/U [8.0 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275	[4500] 310
	[.25]	[170] 20									
	,95	3									
	[.5]	[190] 20	[410] 45	[870] 100							
	1,9	12	8	2							
	[1]	[230] 25	[510]	[1070] 120	[1580] 180	[2050] 230	[2520] 285	[2920] 330	[3310] 375		
	3,8	28	60 27	23	19	230 16	13	330 9	3/3 3		
$\overline{\mathbb{Z}}$	[2]	[230]	[510]	[1080]	[1600]	[2090]	[2580]	[2930]	[3320]	[3640]	[3990]
[GPI	7.5	25 56	60 56	120 53	180 47	235 42	290 39	330 36	375 28	410 21	450 13
Schluckstrom I/min [GPM]	[4]	[220] 25	[500]	[1080] 120	[1620]	[2150] 245	[2660] 300	[3100]	[3540] 400	[3980]	[4420]
l/n	15	114	55 113	111	185 104	97	95	350 92	400 85	450 77	500 70
ron	[6]	[220]	[490]	[1080]	[1640]	[2190]	[2740]	[3260]	[3770]	[4280]	[4800]
ckst	23	25 172	55 171	120 169	185 161	245 153	310 149	370 146	425 132	485 118	540 104
hlu	[8]	[200]	[480]	[1080]	[1650]	[2220]	[2780]	[3310]	[3840]	[4360]	[4890]
S	30	25 230	55 224	120 222	185 219	250 210	315 204	375 201	435 192	495 184	550 175
	[10]	[180] 20	[470] 55	[1070]	[1650] 185	[2230] 250	[2800]	[3420] 385	[3940] 445	[4450]	[4970]
	38	287	286	120 282	276	269	315 261	255	243	505 231	560 219
	[12]	[160] 20	[460] 50	[1060] 120	[1640] 185	[2230] 250	[2800] 315	[3350] 380	[3910] 440	[4440] 500	[4960] 560
	45	3 45	344	338	333	327	317	307	295	284	272
	[14]	[150] 15	[440] 50	[1030] 115	[1620] 185	[2220] 250	[3000] 340	[3350] 380	[3910] 440	[4440] 500	
	53	403	402	395	391	385	373	360 360	348	336	
	[16]	[130] 15	[420] 45	[1010] 115	[1600] 180	[2200] 250	[2780] 315	[3330] 375	[3890] 440	[4440] 500	
	61	461	460	452	447	443	430	411	397	384	
	[18]	[110] 10	[400] 45	[990] 110	[1580] 180	[2160] 245	[2750] 310	[3300] 375	[3860] 435	[4410] 500	
	68	518	517	509	504	500	484	471	456	440	
	[20]	[90]	[380]	[960]	[1550]	[2130]	[2710]	[3280]	[3840]		
	76	10 576	45 575	110 568	175 560	240 551	305 539	370 524	435 508		
	[22]	[60] 5	[350] 40	[940] 105	[1520] 170	[2100] 235	[2680] 305	[3250] 365	[3820] 430		
	83	634	633	624	619	604	597	579	560		
	[24]	[40]	[325]	[920]	[1490]	[2070]	[2650]	[3220]	[3780]		
	91	5 692	35 691	105 682	170 676	235 665	300 651	365 633	425 616		
	[25]	[20] 1,0	[310] 35	[900] 100	[1480] 165	[2050] 230	[2630] 295	[3200] 360	[3700] 420		
	95	720	719	712	705	692	679	682	656		

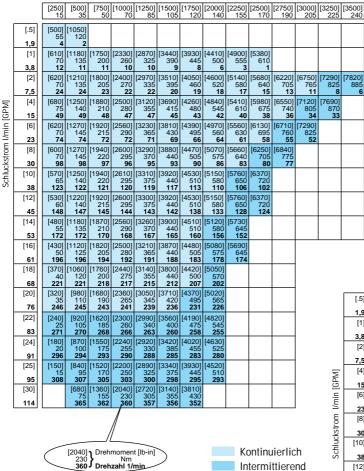
160 cm³/U [9.6 in³/r] Druckdifferenz bar [PSI]

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

195 cm³/U [11.9 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190	[3000] 205	[3250] 225	[3500] 240	[3750] 260	Die Motoren laufen in allen für sie vorgesehenen
	[.25] , 95	[240] 25 4	[590] 65 2														Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer
	[.5]	[290] 35	[640] 70	110	[1340] 150												maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl
	1,9 [1]	[380] 45	[730] 80	[1100] 125	[1430] 160	[1790] 200	[2120] 200	[2450] 275	[2720] 305	[2990] 340	[3260] 370	[3540] 400	[3810] 430	[4080] 460	[4350] 490	[4620] 520	aus dem hellblauen Bereich getroffen wrid.
	3,8 [2]	[390]	16	15	14	13	11 [2195]	9	7 [2880]	5	4	3	2	2 [4800]	1	1	
SPM	7,5	45 37	85 35	[1135] 130 34	165 33	210 32	250 31	285 28	325 26	355 24	[3680] 415 21	460 20	510 19	540	575 14	610 14	
Schluckstrom I/min [GPM]	[4]	[405] 45 76	[795] 90	[1185] 135 73		[1970]		[2675] 300 66				[4160] 470	[4520] 510	[4890] 550	[5260] 595	[5630] 635	
E I	15 [6]	[405]	74 [815]	[1220]	[1590]	[2035]	[2395]	[2780]	[3170]	[3560]	[3940]	59 [4320]	57 [4700]	[5070]	51 [5450]	45 [5830]	
skstr	23	115	90 113	140 111	180 110	230 109	270 108	315 104	360 1 02	400 100	445 99	490 96	530 94	570	615 87	660 81	
Schlu	[8]	[400] 45	90	[1230] 140	185	[2065] 235 147	275	[2850] 320	370	[3670] 415	[4040] 455	[4410] 500	[4780] 540 130	[5150] 580	[5520] 625	[5890] 665	
	30 [10]	1 54 [380]	151 [810]	149 [1230]	148 [1645] 185		146 [2480]	143 [2895] 325	140 [3310]	137 [3730]	135 [4100]	132 [4470]	[4840]	[5210]	123 [5590]	117	
	38	45 193	95 190	140 188	185 187	186	280 184	181	177	420 175	465 173	505 170	545 168		630 160		
	[12]	[355] 40	[790] 90	[1215] 135	[1650] 185	[2100] 235	[2485] 280	[2915] 330	[3340] 375	[3760] 425	[4120] 465	[4480] 505	[4850] 550				
	45 [14]	231 [320]	229	227 [1190]	226 [1645]	224	221	219 [2915]	218	215	211 [4130]	208 [4480]	204 [4860]				
	53	35 269	85 267	135 267	185 264	235 261	280 260	330 257	[3350] 380 254	425 250	465 248	505 245	550 241				
	[16]	[290] 30 308	[730] 80 306		[1625] 185 303	[2070] 235 299	[2455] 275 296	[2900] 330 294	[3340] 375 290		[4130] 465 283	[4490] 505 279	[4860] 550 276				
	61 [18]	[290]	[690]	[1120]	[1590]	[2035]	[2420]	[2870]	[3310]	[3730]	[4100]	[4480]	2/6				
	68	30 346	80 345		180 342		270 334	325 333	375 327	420 321	465 315	505 308					
	[20]	[210] 25	[650] 75	[1080] 120	[1550] 175	[1995] 225 375	[2380] 270	[2830] 320	[3270] 370	[3690] 415	[4070] 460	[4450] 500					
	76 [22]	385 [170]	384 [610]	383 [1040]	380 [1500]		372 [2340]	371 [2785]	367	363 [3640]	359 [4050]	355					
	83	20 424	70 423	120 422	170 418	[1955] 220 414	265 410	315 408	[3220] 365 404	410 399	460 395						
	[24]	[135]	[570]	[1000]	[1440]	[1910]	[2300]	[2740]	[3170]	[3590]	[3980]						
91																	
	[25]	[120] 15	[550] 60	110	[1410] 160	215	[2280] 260	[2720] 305	[3150] 355	[3570] 405	[3960] 445				245	cm³/H	[14.9 in ³ /r]
	95 [30]	484	482 [420]	479 [860]	476 [1290]	473 [1700]	469 [2120]	464 [2530]	459 [2940]	454 [3400]	449						nz bar [PSI]
	114		45 577	95 575	145 571	190	240	285 556	330 550	385 542		[250	[500 5 3	0] [750			0] [1500] [1750] [2000] [2250] [2500] [2750] [3000] [3250] [3500] [3750] 5 105 120 140 155 170 190 205 225 240 260

[.5]


[2120] Drehmoment [lb-in Nm 562] Drehzahl 1/min Kontinuierlich Intermittierend

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt.

Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

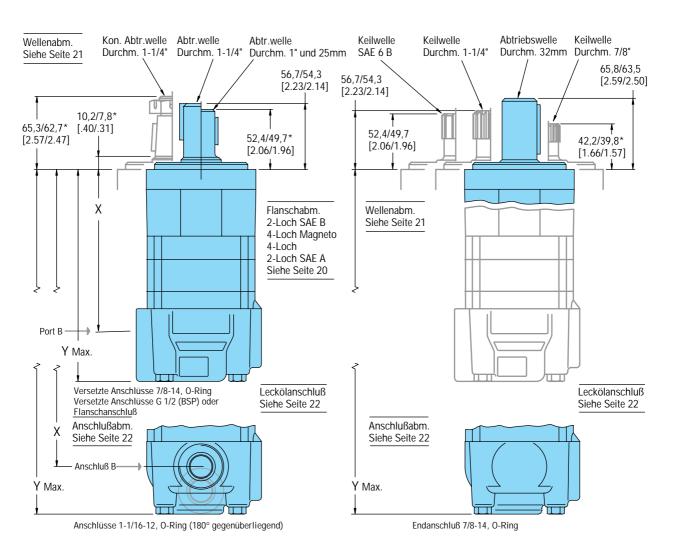
305 cm³/U [18.7 in³/r] Druckdifferenz bar [PSI]

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

395 cm³/U [24.0 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190
	[.5]	[560] 65	[1310] 150									
-	1,9 [1]	[770]	[1540]	[2290]	[3080]	[3780]	[4480]	[5170]	[5880]	[6580]	[7270]	[7980]
	3,8	85 9	175 9	260 9	350 8	430 8	505 7	585 7	665 6	745 5	820 4	900
	[2]	[790] 90	[1580] 180	[2360] 265	[3180] 360	[3930] 445	530	615	[6180] 700	[6840] 775	[7500] 845	[8170] 925
_ ŀ	7,5 [4]	[810]	18 [1660]	[2480]	17 [3320]	17 [4130]	16 [4940]	15 [5740]	14 [6550]	[7230]	[7880]	10
2 2	15	90	190 37	280	375 36	465 36	560 35	650 34	740 33	815 31	890 28	
ΞÏ	[6]	[820]	[1700]	[2550]	[3420]	[4250]	[5080]	[5920]	[6750]	[7420]	[8000]	
5	23	90 57	190 56	290 56	385 55	480 54	575 52	670 50	765 49	840 47	905 45	
SCHIUCKSHOIN VIIIII	[8] 30	[820] 90 76	[1700] 190 75	[2580] 290 75	[3460] 390 74	[4300] 485 73	[5130] 580 71	[5960] 675 69	[6800] 770 68			
<u> </u>	[10]	[800]	[1700]	[2590]	[3480]	[4320]	[5160]	[6000]	[6840]			
2	38	90 95	190 94	295 94	395 93	490 92	585 90	680 88	775 86			
	[12]	[770] 85	[1680] 190	[2570] 290	[3470] 390	[4310] 485	[5150] 580	[5990] 675	[6830] 770			
ŀ	45	114	113	113	112	111	109	106	103			
	[14] 53	[740] 85 133	[1640] 185 132	[2530] 285 132	[3430] 390 131	[4280] 485 129	[5120] 580 127	[5960] 675 124				
İ	[16]	[690]	[1590]	[2480]	[3370]	[4220]	[5060]	[5910]				
	61	80 153	180 152	280 152	380 150	475 149	570 146	670 144				
	[18]	[640] 70	[1530] 170	[2420] 275	[3310] 375	[4160] 470	[5010] 565	[5870] 665				
ŀ	68	172	171	171	170	169	167	164				
	[20]	[580] 65	[1470] 165	[2370] 270	[3260] 370	[4110] 465	[4960] 560	[5820] 660				
ŀ	76	191	190	190	189	188	186	184				
	[22] 83	[510] 60 210	[1390] 155 209	[2290] 260 209	[3170] 360 208	[4030] 455 207	[4880] 550 206					
ŀ	[24]	[440]	[1330]	[2220]	[3100]	[3950]	[4800]					
	91	50 230	150 229	250 228	350 227	445 225	540 224					
	[26]	[350] 40	[1240] 140	[2130] 240	[3020] 340	[3880] 440	[4730] 535					
	98	249	248	247	246	244	242					
	[28]	[270] 30	[1150] 130	[2050] 230	[2930] 330	[3790] 430	[4650] 525					
L	106	268	267	265	264	261	259					
	[30]	[180] 20	[1060] 120	[1960] 220	[2850] 320	[3710] 420	[4570] 515					
	114	287	286	284	283	281	277					
	[35]		[840] 95	[1760] 200	[2640] 300	[3480] 395						
Į	132		335	334	333	332						

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.


Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

490 cm³/r [29.8 in³/r] [750] [1000] [1250] [1500] [1750] [2000] 50 70 85 105 120 140 [500] 35 [1600] 180 [670] 75 1,9 [1] 3,8 [3110] 350 **12** [4080] 460 **10** [950] 105 **14** [2060] 235 **13** 5110] 575 **9** [2] [2130] [3230] 240 365 29 28 [4270] [5350] 480 605 **27 26** [6370] [7380] 720 835 **24 22** [4] Schluckstrom I/min [GPM] 835 **22** 15 [6420] [7470] 725 845 **39 37** [6] [2120] [3230] [5370] [4300] 240 **4**4 365 **43** 485 **42** 60 23 [2110] [3220] 240 365 **60 59** [980] 110 **61** [4330] [5400] 490 610 **58 57** [6470] [7550] 730 855 **55 52** [8] 30 [920] 105 **76** [2050] [3170] 230 360 **75 74** [4300] [5390] 485 610 **73 72** [6460] [7550] 730 855 **70 68** [10] [860] 95 **91** [1990] [3120] 225 355 **90 90** [4260] 480 **89** [5370] 605 **87** [12] [790] 90 **106** [1930] [3055] 220 345 **105 105** [4185] [5300] 475 600 **104 102** 6400] 725 **100** [14] 53 [720] 80 **122** [1870] 210 **121** 2990] 340 **120** [4110] [5230] 465 590 **119 118** [16] 61 [1770] 200 **136** [2890] 325 **135** [4020] [5140] 455 580 **134 133** 6260] 705 **131** [18] [630] 70 **137** 68 [550] 60 **153** [1670] 190 **152** 2800] 315 **151** 3940] 445 **150** 76 [450] 50 **168** [1570] 175 **168** [2700] 305 **167** [3830] [4960] 435 560 **165 164** 6070] 685 **161** [22] [360] 40 **184** [1480] 165 **184** [2600] 295 **183** [3730] [4860] 420 550 **181 179** [5970] 675 **177** [24] 91 [26] [270] [1390] 155 **195** [3640] 410 **192** [4770] 540 **190** [2510] 285 **194** 98 [1260] [2370] 140 270 **212 211** [3520] 400 **209** [4630] 525 **207** [28] 106 [1130] [2240] 125 255 **230 229** [3400] [4500] 385 510 **277 224** [30] [1130] Drehmoment [lb-in] Nm Drehzahl 1/min Kontinuierlich Intermittierend

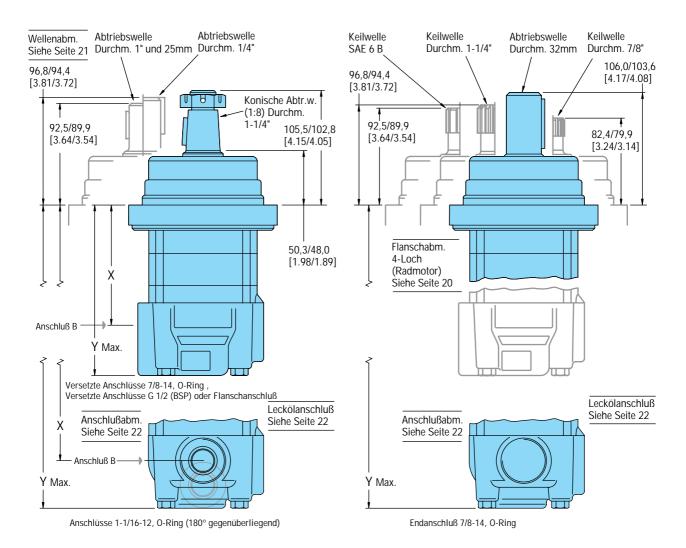
Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

Abmessungen Serie 2000, Standardmotor

Serie 2000, Standardmotor mit versetzten Anschlüssen 7/8-14, O-Ring; versetzten Anschlüssen G 1/2 (BSP) oder Flanschanschluß

Schluckvolu	Schluckvolumen											
cm ³ /U	80	100	130	160	195	245	305	395	490			
[in³/r]	[4.9]	[6.2]	[8.0]	[9.6]	[11.9]	[14.9]	[18.7]	[24.0]	[29.8]			
Abm. mm				147,9								
X [in]	[5.40]	[5.58]	[5.83]	[5.83]	[6.10]	[6.45]	[6.90]	[7.53]	[8.21]			
Abm. mm Υ [in]				195,4 [7.69]					255,8 [10.07]			

Serie 2000 Standardmotor mit 1-1/16-12, O-Ring (180° gegenüberliegend); für Motoren mit Endanschluß 7/8-14, O-Ring nur Abmessungen Y verwenden


		•	•	
Abm. mm	139,3 143,9 150,	2 150,2 157	,1 166,0 177,4	193,4 210,7
X [in]	[5.49] [5.67] [5.	92] [5.92] [6.	19] [6.54] [6.99]	[7.62] [8.30]
Abm. mm	185,7 190,3 196,	6 196,6 203	,5 212,4 223,8	239,8 270,1
Y [in]	[7.31] [7.49] [7.	74] [7.74] [8.	01] [8.36] [8.81]	[9.44] [10.12]

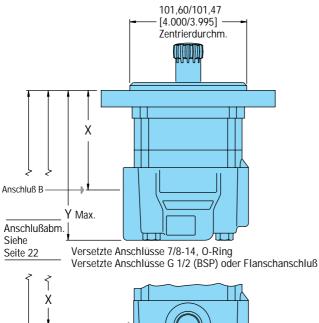
Standard-Drehrichtung mit Blick auf Abtriebswelle Druck auf Anschluß A — rechtsdrehend Druck auf Anschluß B — linksdrehend

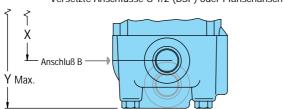
^{*} Bei 4-Loch Magneto-Flanschen 3,6 [.14] / 4,1 [.16] abziehen.

Abmessungen Serie 2000, Radmotor

Serie 2000, Radmotor mit versetzten Anschlüssen 7/8-14, O-Ring: versetzten Anschlüssen G 1/2 (BSP) oder Flanschanschluß

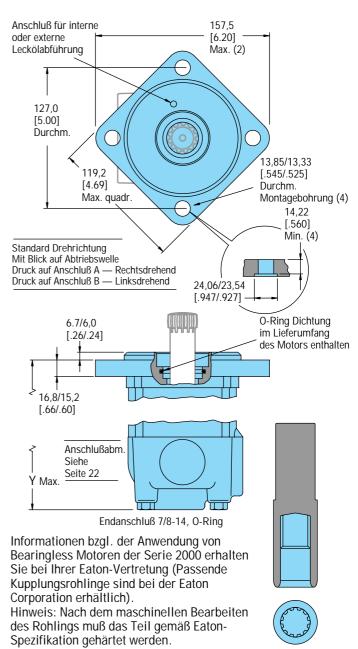
Schluckvolumen												
cm ³ /U	80	100	130	160	195	245	305	395	490			
[in³/r]	[4.9]	[6.2]	[8.0]	[9.6]	[11.9]	[14.9]	[18.7]	[24.0]	[29.8]			
Abm. mm					114,6							
X [in]	[3.82]	[4.00]	[4.25]	[4.25]	[4.52]	[4.87]	[5.32]	[5.95]	[6.63]			
Abm. mm Y [in]					162,1 [6.38]							
1	F 3	F 3	r. ,	r. 1	r	F 3			F			


Serie 2000, Radmotor mit 1-1/16-12, 0-Ring (180 $^\circ$ gegenüberliegend); für Motoren mit Endanschluß 7/8-14, 0-Ring nur Abmessung Y verwenden


Abm. mm X [in]			116,9 [4.61]		
Abm. mm Y [in]	145,6 [5.73]		163,4 [6.43]		

Standard Drehrichtung mit Blick auf Abtriebswelle Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

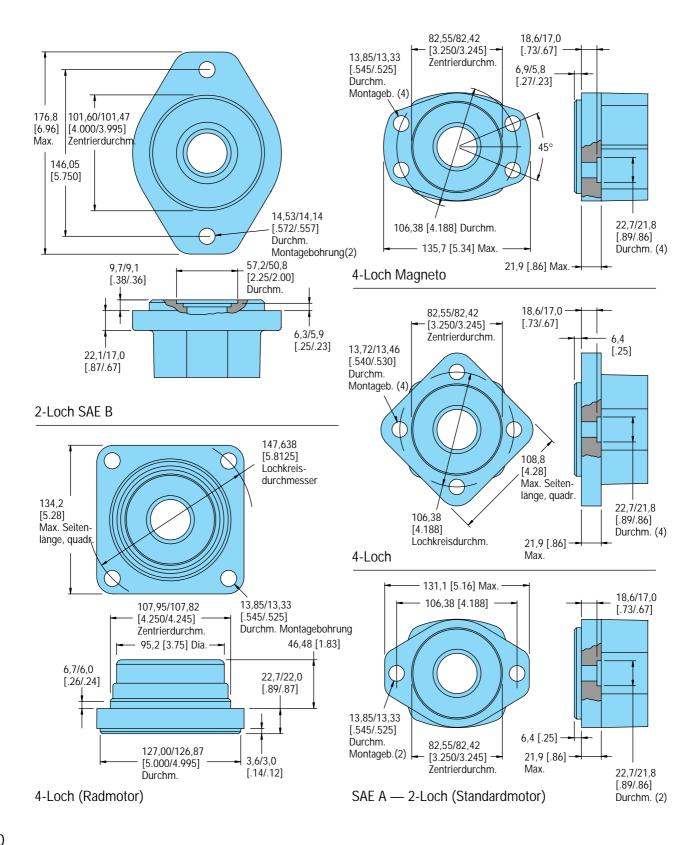
Abmessungen Serie 2000, Bearingless Motor


Anschlüsse 1-1/16-12, O-Ring (180° gegenüberliegend)

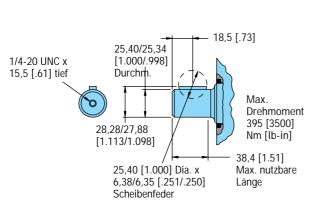
Serie 2000, Bearingless Motor mit versetzten Anschlüssen 7/8-14, O-Ring; versetzten Anschlüssen G 1/2 (BSP) oder Flanschanschluß

Schluckvolumen												
cm ³ /U [in ³ /r]	80	100 [6.2]	130 [8.0]	160 [9.6]	195 [11.9]	245 [14.9]	305 [18.7]	395 [24.0]	490 [29.8]			
Abm. mm X [in]				89,9 [3.54]								
Abm. mm Y [in]	126,8 [4.99]											

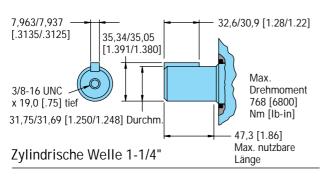
Serie 2000, Bearingless Motor mit versetzten Anschlüssen 7/8-14, O-Ring oder Anschlüssen 1-1/16-12 O-Ring (180° gegenüberliegend)

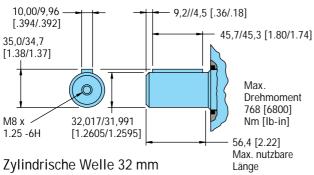

	J					()			,	
Abm.	mm	81,3	85,8	92,2	92,2	99,0	107,9	119,4	135,4	152,5
Χ	[in]	[3.20]	[3.38]	[3.63]	[3.63]	[3.90]	[4.25]	[4.70]	[5.33]	[6.00]
				139,0 [5.47]						

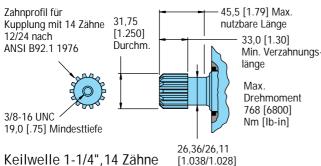
Passende Kupplungsrohlinge in verschiedenen Längen Eaton Teilenummer 13307-xxx

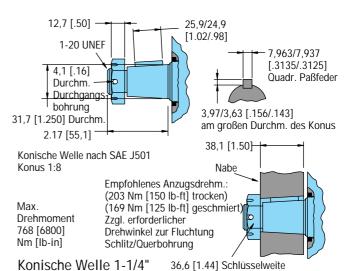


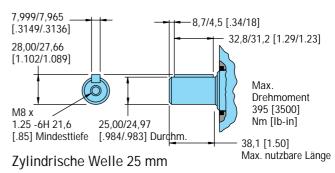
Abmessungen der Montageflansche Serie 2000

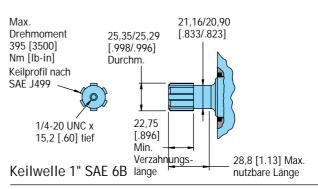


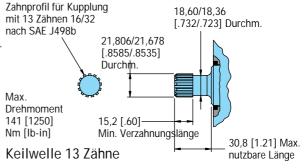


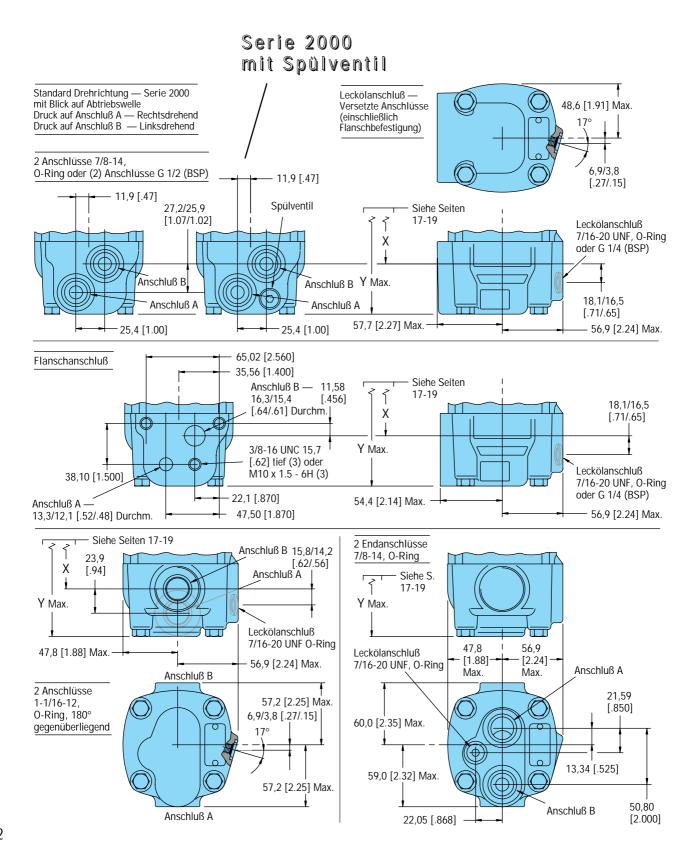

Abmessungen der Abtriebswellen Serie 2000



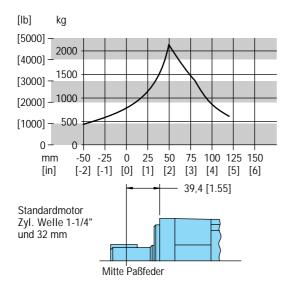

Zylindrische Welle 1"

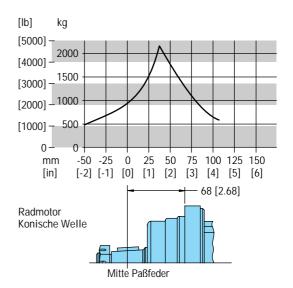


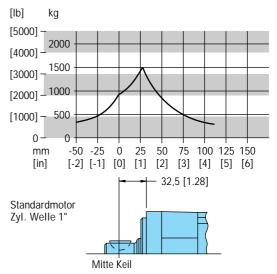




Abmessungen der Hydraulikanschlüsse Serie 2000


Wellenbelastung Serie 2000


Die Diagramme auf dieser Seite zeigen die zulässigen Radialkräfte auf die Abtriebswelle(n) bezogen auf verschiedene Kraftangriffspunkte.


Das Diagramm basiert auf einer Lagerlebensdauer L 10 (2000 Stunden oder 12.000.000 Wellenumdrehung bei 100 1/min) bei Nenndrehmoment. Zur Ermittlung der Radialkräfte bei anderen Drehzahlen als 100 1/min sind die im Lagerdiagramm angegebenen Belastungswerte mit den in nachstehender Tabelle aufgeführten Faktoren zu multiplizieren.

1/min	Multiplikationsfaktor	
50	1.23	
100	1.00	
200	.81	
300	.72	
400	.66	
500	.62	
600	.58	
700	.56	
800	.54	

Bei 3.000.000 Wellenumdrehungen oder 500 Stunden erhöhen sich diese Wellenbelastungen um 52 %.

Drehzahlsensor Serie 2000

Eaton hat einen Drehzahlsensor speziell für langsam laufende Hochmomentmotoren entwickelt. Es handelt sich um eine robuste Ausführung, die vollständig gegen Falschpolung oder Kurzschluß gesichert ist. Ein innenliegender Lastwiderstand erleichtert die Einbindung in elektronische Überwachungssysteme.

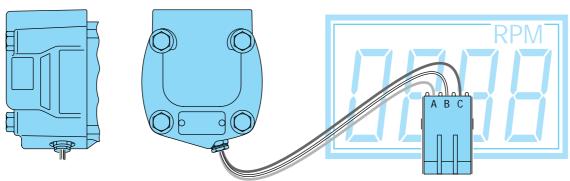
Der Sensor ist vollständig kompatibel zu allen elektrischen Systemen des Fahrzeugbaus und ermöglicht ein zuverlässiges digitales EIN/AUS-Signal innerhalb großer Drehzahl- und Temperaturbereiche. Der Drehzahlsensor kann vor Ort gewartet werden; es ist keine Einstellung im Werk und kein Justieren erforderlich.

Eingangsspannung: 8 bis 24 V (kompatibel zu 12 V Systemen)

Eingangsstromstärke: 20 mA max. (einschließlich internem

Widerstand)

Ausgangsspannung: < .5 Vdc @ 10 mA; offener Kollektor mit


10-k Ω -Widerstand.

Anschlüsse — Std. 3polig, Weatherpack Connector mit US-Verkabelung 18 AWG:

Position A (rot) = Eingangssignal Position B (weiß) = Ausgangsignal Position C (schwarz) = Masse

Ausgang — Digitales EIN/AUS-Signal vom Hall- Effekt-Schalter; 30 Impulse pro Umdrehung

Serie 2000

Bemerkung: Das Anzeigegerät (Display) gehört nicht zum Lieferumfang des Drehzahlsensors. Eine mögliche Bezugsquelle für das Display ist:

Eaton Corporation Durrant Products 901 South 12th Street Watertown, WI 57094, USA Tel.: ++1-800-289-3866

Hayes-Bremssystem M15WM Radmotoren der Serie 2000

Zur Verwendung mit Radmotoren der Serie 2000 im Fahrzeugbau liefert die Hayes Industrial Brakes, Inc. eine mechanische Feststell-/Betriebsbremse Typ:

M15WM für 8-Zoll-Räder (Scheibendurchmesser 152,4 [6.0]) M15WM für 10-Zoll-Räder (Scheibendurchmesser 209,6 [8.25])

Merkmale

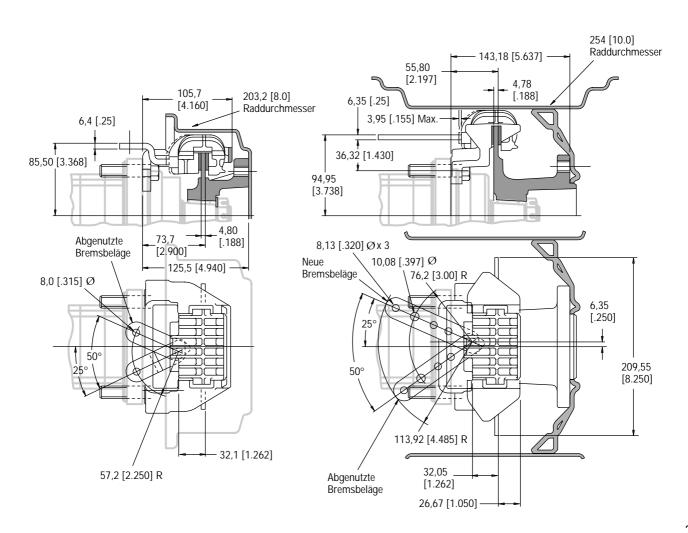
- Klemmkraft von bis zu 650 kg
- · Einfache, einteilige Konstruktion des Bremssattels
- · Weniger bewegliche Teile

Montageflanschabmessungen

8 7oII-Rad

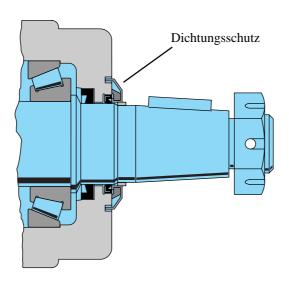
Max. Drehmoment 305 Nm

Nur mit speziellen Montageflansch Code "P".


- Umfassendes Bremssystem, bestehend aus:
 - Aluminiumbremssattel
 - Bremsträger aus Sphäroguß
 - Bremsscheibe aus Sphäroguß
- Mehrere Wellengrößen und Optionen bzgl. der Nabenmontagebohrungen lieferbar.

Bemerkung: Die Bremsen müssen direkt bei Hayes Industrial Brake bezogen werden. Sie werden von Eaton weder verkauft noch an die Motoren montiert. Weitergehende Informationen sind erhältlich bei:

Hayes Industrial Brake, Inc. 5800 West Donges Bay Road Mequon, WI 57092, USA Telefon: ++1-414-242-4300; Fax: ++1-414-242-0524


10 Zoll-Rad Max. Drehmoment 429,4 Nm

Passend zur Standard 4-Loch Radmotor-Flanschbefestigung

Dichtungsschutz als Sonderausstattung für die Serien 2000, 4000 und 6000

Um die Lebensdauer der Wellendichtung auch unter rauhen Umgebungsbedingungen zu verlängern, bietet EATON jetzt einen Dichtungsschutz an. Er besteht aus einem Metallschild, der eine innenliegende Abstreifdichtung schützt. Der Schild ist auf die Abtriebswelle aufgepreßt und läuft mit ihr um. Als zusätzlicher Schutz ist der Schild in eine eigens zu diesem Zweck vorhandene Nut in der Stirnseite des Lagergehäuses eingelassen.

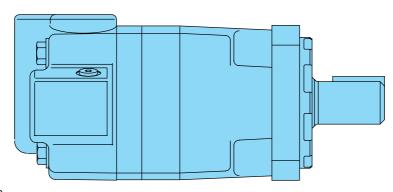
Zentrifugalkraft sorgt dafür, daß Schmutzpartikel von Druck- und Staubdichtung der Abtriebswelle ferngehalten werden. Der Dichtungsschutz dichtet nicht gegen Hydraulikflüssigkeiten ab, er schützt lediglich die Standarddichtungen vor Beschädigung durch Schmutzpartikel. Zu den typischen Anwendungen, bei denen dieses Merkmal von Nutzen ist, gehören Straßen- und Industriekehrmaschinen sowie Erntemaschinen.

Bemerkung: Diese Option wird zusammen mit einem speziellen Lagergehäuse mit Schildnut verwendet. Optionscode für diese Sonderausführung: "28" (Serie 2000), "13" (Serie 4000) und "14" (Serie 6000). Diese Motoren umfassen den Dichtungsschutz, das spezielle Lagergehäuse und eine längere Spezialwelle. (Die Serie 6000 mit Designcode 006 erfordert kein spezielles Lagergehäuse, und die Standardwellen nehmen den Dichtungsschutz auf). Detaillierte Informationen über den Dichtungsschutz für diese Produkte siehe Produktdatenblatt 1-156.

Produktnummern Serie 2000

Produktnummern — Serie 2000

Die 3-stellige Kennzahl 104-, 105-, oder 106- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel: 106-1043. Bestellungen ohne die 3-stellige Kennzahl können nicht bearbeitet werden.


106-1043

			Schluck	volumen cr	m³/U [in³/r]	und Pi	roduktnumi	mer			
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	80 [4.9]	100 [6.2]	130 [8.0]	160 [9.6]	195 [11.9]	245 [14.9]	305 [18.7]	395 [24.0]	490 [29.8]
	25mm zyl.	G 1/2 (BSP)	104-1503	-	-	-	-	-	-	-1655	-
2-Loch Flansch	32mm zyl.	G 1/2 (BSP)	104-1498	-	-	-1799	-	-	-	-1760	-
SAE A	1" zyl.	G 1/2 (BSP)	104	-	-	-1523	-1852	-	-1841	-	-
	1" SAE 6B	G 1/2 (BSP)	104	=	=	=	=	-1551	=	-1417	=
	32mm zyl.	G 1/2 (BSP)	104-1384	-1385	-1386	-1387	-1388	-1389	-1390	-1391	-1546
		FI. M10x1,5	104-1470	-1471	-1472	-1473	-1474	-1475	-1476	-1477	-1478
-Loch	1-1/4" zyl.	G 1/2 (BSP)	104	-	-	-	-1662	-	-1720	-	-
-Loch lansch tandard	1" SAE 6B	G 1/2 (BSP)	104-1493	-	-	-	-1890	-	-	-	-
tandard	1 1/4" konisch 1:8	G 1/2 (BSP)	104-1446	-	-1913	-1572	-1447	-	-1564	-1448	-1653
	1 1/4" Vielkeil 14 Z.	G 1/2 (BSP)	104-1376	-1377	-1378	-1379	-1380	-1381	-1382	-1383	-1660
	1 1/4 VIEIKEII 14 Z.	FI. M10x1,5	104-1461	-1462	-1463	-1434	-1465	-1466	-1467	-1468	-1469
Radmotor 4-Loch ISO 125	32mm zyl.	G 1/2 (BSP)	105	-	-	-	-1162	-	-	-	-
Radmotor	32mm zyl.	G 1/2 (BSP)	105-1134	-1135	-1136	-1137	-1138	-1139	-1140	-1141	-1177
l-Loch lansch	1 1/4" konisch 1:8	G 1/2 (BSP)	105	-	1158	-	-	-1183	-	-1163	-
Bearingless		G 1/2 (BSP)	106-1038	-1039	-1040	-1041	-1042	-1043	-1044	-1045	-1063

Die nicht in dieser Tabelle aufgeführten Motoren der Serie 2000 sind mit Hilfe des Modellschlüssels auf Seite 72 zu spezifizieren.

Technische Daten Serie 4000

Technische Daten — Serie 4000

	110 [6.7]	130 [7.9]	160 [9.9]	205 [12.5]	245 [15.0]	310 [19.0]	395 [24.0]	495 [30.0]	625 [38.0]
Kontinuierl.	697	722	582	459	383	303	239	191	151
Intermittier.	868	862	693	546	532	422	376	305	241
Kontinuierl.	75 [20]	95 [25]	95 [25]	95 [25]	95 [25]	95 [25]	95 [25]	95 [25]	95 [25]
Intermittier.	95 [25]	115 [30]	115 [30]	115 [30]	130 [35]	130 [35]	150 [40]	150 [40]	150 [40]
Kontinuierl.	320 [2850]	375 [3330]	485 [4290]	600 [5300]	705 [6240]	850 [7530]	930 [8240]	945 [8375]	970 [8605]
Intermittier.	470 [4160]	560 [4940]	705 [6240]	800 [7100]	845 [7470]	1065 [9420]	1185 [10470]	1170 [10350]	1180 [10450]
Kontinuierl.	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	190 [2750]	140 [2000]	115 [1700]
Intermittier.	310 [4500]	310 [4500]	310 [4500]	310 [4500]	260 [3750]	260 [3750]	240 [3500]	170 [2500]	140 [2000]
Spitze	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	295 [4250]	295 [4250]	295 [4250]
	Kontinuierl. Intermittier. Kontinuierl. Intermittier. Kontinuierl. Intermittier. Kontinuierl. Intermittier.	[6.7] Kontinuierl. 697 Intermittier. 868 Kontinuierl. 75 [20] Intermittier. 95 [25] Kontinuierl. 220 [2850] Intermittier. 470 [4160] Kontinuierl. 205 [3000] Intermittier. 310 [4500]	Kontinuieri. 697 722 Intermittier. 868 862 Kontinuieri. 75 [20] 95 [25] Intermittier. 95 [25] 115 [30] Kontinuieri. 320 [2850] 375 [3330] Intermittier. 470 [4160] 560 [4940] Kontinuieri. 205 [3000] 205 [3000] Intermittier. 310 [4500] 310 [4500]	Kontinuierl. 697 722 582 Intermittier. 868 862 693 Kontinuierl. 75 [20] 95 [25] 95 [25] Intermittier. 95 [25] 115 [30] 115 [30] Kontinuierl. 320 [2850] 375 [4290] 485 [4290] Intermittier. 470 [4160] 560 [4940] 705 [6240] Kontinuierl. 205 [3000] 205 [3000] 205 [3000] Intermittier. 310 [4500] 310 [4500] 310 [4500]	Kontinuierl. 697 722 582 459 Intermittier. 868 862 693 546 Kontinuierl. 75 [20] 95 [25] 95 [25] 95 [25] Intermittier. 95 [25] 115 [30] 115 [30] 115 [30] Kontinuierl. 320 [2850] 3375 [485 [4290] 600 [5300] Intermittier. 470 [4160] 560 [4940] 705 [6240] 800 [7100] Kontinuierl. 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] Intermittier. 310 [4500] 310 [4500] 310 [4500] 310 [4500] 310 [4500]	Kontinuierl. 6.7] [7.9] [9.9] [12.5] [15.0] Kontinuierl. 697 722 582 459 383 Intermittier. 868 862 693 546 532 Kontinuierl. 75 [20] 95 [25] 95 [25] 95 [25] 95 [25] Intermittier. 95 [25] 115 [30] 115 [30] 115 [30] 130 [35] Kontinuierl. 320 [2850] [3330] 485 [600 [5300] [6240] [6240] Intermittier. 470 [4160] 560 [4940] 705 [6240] 800 [7100] 845 [7470] Kontinuierl. 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 206 [3750] Intermittier. 310 [4500] 310 [4500] 310 [4500] 310 [4500] 260 [3750]	Kontinuierl. 697 722 582 459 383 303 Intermittier. 868 862 693 546 532 422 Kontinuierl. 75 [20] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 130 [35] Intermittier. 95 [25] 115 [30] 115 [30] 115 [30] 130 [35] 130 [35] Kontinuierl. 320 [2850] 375 [485 [600] 600 [5300] 705 [6240] 850 [7530] Intermittier. 470 [4160] 660 [6240] 705 [6240] 845 [7470] 1065 [9420] Kontinuierl. 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 206 [3750] 260 [3750]	Kontinuierl. 697 722 582 459 383 303 239 Intermittier. 868 862 693 546 532 422 376 Kontinuierl. 75 [20] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 95 [25] 150 [40] Kontinuierl. 320 [2850] 375 [3330] 485 [4290] 600 [5300] 705 [6240] 850 [7530] 930 [8240] Intermittier. 470 [4160] 560 [4940] 705 [6240] 845 [7100] 1065 [7100] 1185 [10470] Kontinuierl. 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 205 [3000] 206 [3750] 240 [3500] Intermittier. 310 [4500] 310 [4500] 310 [4500] 260 [3750] 260 [3750] 240 [3500]	Kontinuierl. 6.7] [7.9] [9.9] [12.5] [15.0] [19.0] [24.0] [30.0] Kontinuierl. 697 722 582 459 383 303 239 191 Intermittier. 868 862 693 546 532 422 376 305 Kontinuierl. 75 [20] 95 [25]

Maximaler Gehäusedruck ohne Leckölabführung * — 100 bar [1500 PSI]

Ein maximales Drehmoment bei gleichzeitiger hoher Drehzahl ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb, siehe Leistungsdaten auf Seite 29-32.

Maximales Drehmoment bei 40mm Welle — 770 Nm [6800 lb-in] bei kontinuierlichem Betrieb, 960 Nm [8500 lb-in] bei intermittierendem Betrieb.

* Bei einem kontinuierlichen Rücklaufdruck von über 105 bar [1500 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen sind so zu montieren, daß das Motorgehäuse stets gefüllt bleibt.

 $Maximaler\ Eingangsdruck\ --310\ bar\ [4500\ PSI].\ Die\ vorgegebene\ Druck differenz\ (siehe\ Tabelle\ oben)\ darf\ nicht\ ""uberschritten\ werden.$

* Maximaler Rücklaufdruck — 310 bar [4500 PSI]. Die vorgegebene Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden. Druckdifferenz — Differenz zwischen Eingangs- und Rücklaufdruck.

Kontinuierlicher Betrieb — Der Motor kann mit diesen Daten im Dauerbetrieb gefahren werden.

Intermittierender Betrieb — Zul. Betriebsbereich während 10% jeder Minute.

Spitzenbetrieb — Zul. Betriebsbereich während 1% jeder Minute.

Empfehlung für Druckflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl. Viskosität nicht unter 13 cSt, bei Betriebstemperatur (siehe Seite 69).

Empfehlung für max. Systemtemperatur — 82° C [180° F].

Empfehlung für Ölfilterung — Entsprechend ISO-Reinheitsklasse 18/13.

Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30% der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

110 cm³/U [6.7 in³/r] Druckdifferenz bar [PSI]

130 cm³/U [7.9 in³/r] Druckdifferenz bar [PSI]

		[250]	[500]		[1500]	[2000]	[2500]	[3000]			[4500]
		15	35	70	105	140	170	205	240	275	310
	[.5]	[150] 15	[390] 45	[850] 95	[1290] 145						
	1,9	14	10	5	2						
	[1]	[170] 20	[440] 50	[900] 100	[1380] 155	[1860] 210	[2270] 255	[2680] 305	[3110] 350		
	3,8	34	33	31	28	25	22	18	11		
	[2]	[180] 20	[450] 50	[910] 105	[1390] 155	[1860] 210	[2280] 260	[2700] 305	[3120] 355	[3450] 390	
	7,5	68	67	62	56	50	44	36	28	18	
3PM]	[4] 15	[190] 20 138	[460] 50 136	[940] 105 123	[1400] 160 110	[1870] 210 97	[2310] 260 84	[2730] 310 70	[3140] 355 56	[3560] 400 42	[3880] 440 28
Schluckstrom I/min [GPM]	[6]	[200] 25	[470] 55	[960] 110	[1420] 160	_	[2320] 260	[2760] 310		[3640] 410	[3950] 455
7	23	207	204	200	193	184	174	163	150	136	121
trom	[8]	[190] 20	[460] 50	[950] 105	[1420] 160	[1880] 210	[2340] 265	[2790] 315	[3230] 365	[3670] 415	[4010] 455
SS	30	277	274	270	262	253	241	228	213	196	179
schlu	[10]	[180] 20	[460] 50	[950] 105	[1420] 160	[1890] 215	[2350] 265	[2820] 320	[3260] 370	[3700] 420	[4070] 460
0,	38	347	344	340	331	322	308	292	274	255	236
	[12]	[160] 20	[450] 50	[940] 105	[1420] 160	[1880] 210	[2350] 265	[2820] 320	[3260] 370	[3710] 420	[4080] 460
	45	417	414	410	400	390	374	355	335	313	292
	[14]	[140] 15	[440] 50	[930] 105	[1420] 160	[1880] 210	[2350] 265	[2830] 320	[3280] 370	[3730] 420	[4110] 465
	53	487	484	480	469	458	440	419	446	471	348
	[16]	[130] 15	[440] 50	[920] 105	[1410] 160	[1870] 210	[2350] 265	[2840] 320	[3300] 375	[3750] 425	[4120] 465
	61	556	553	549	537	525	505 505	482	455	425 428	405 404
	[18]	[100]	[440]	[910]	[1400]	[1870]	[2350]	[2840]	[3300]	[3770]	[4140]
		10	50	105	160	210	265	320	375	425	465
	68	626	622	618	606	593	570	545	516	485	460
	[20]	[80] 10	[430] 50	[900] 100	[1370] 155	[1860] 210	[2350] 265	[2850] 320	[3320] 375	[3790] 430	[4160] 470
	76	697	694	690	677	664	638	611	579	545	518
	[25]		[400]	[860]	[1350]	[1850] 210	[2320] 260	[2830] 320	[3300] 375	[3780] 425	
	95		45 868	95 861	155 838	816	792	767	729	690	
. '			c							7	

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

[3780] Drehmoment [lb-in] Nm Nm Drehzahl 1/min

160 cm³/U [9.9 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275	[4500] 310
	[.5]	[300] 35	[680] 75	[1320] 150	[2050] 230	[2750]					
	1,9	8	75 7	5 5	230	310 1					
	[1]	[320] 35	[700] 80	[1350] 155	[2070] 235	[2780] 315	[3300] 375	[3940] 445	[4410] 500	[4950] 560	
	3,8	23	22	20	19	18	16	15	8	2	
	[2]	[330] 35	[700] 80	[1360] 155	[2080] 235	[2790] 315	[3340] 375	[3970] 450	[4530] 510	[5090] 575	[5590] 630
	7,5	46	45	41	40	37	32	29	27	25	13
Σ	[4]	[320] 35	[710] 80	[1400] 160	[2100] 240	[2820] 320	[3420] 385	[4020] 455	[4620] 520	[5220] 590	[5730] 645
5	15	93	92	90	88	84	76	73	62	51	35
ш	[6]	[300] 35	[710] 80	[1420] 160	[2140] 240	[2850] 320	[3510] 395	[4180] 470	[4760] 540	[5340] 605	[5870] 665
۲ ≥	23	137	135	134	131	126	120	114	90	75	57
Schluckstrom I/min [GPM]	[8]	[280] 30	[720] 80	[1450] 165	[2180] 245	[2900] 330	[3560] 400	[4230] 480	[4850] 550	[5470] 620	[6010] 680
cks	30	184	182	180	176	171	163	154	138	122	100
를	[10]	[260] 30	[720] 80	[1480] 165	[2220] 250	[2950] 335	[3610] 410	[4290] 485	[4920] 555	[5560] 630	[6160] 695
Š	38	232	229	226	221	216	206	194	182	169	142
	[12]	[240] 25	[700] 80	[1450] 165	[2190] 245	[2920] 330	[3590] 405	[4280] 485	[4920] 555	[5570] 630	[6180] 700
	45	277	274	272	266	260	250	238	224	209	182
	[14]	[220] 25	[680] 75	[1420] 160	[2160] 245	[2890] 325	[3570] 405	[4270] 480	[4920] 555	[5580] 630	[6200] 700
	53	321	319	318	311	304	294	282	266	249	222
	[16]	[200] 25	[670] 75	[1400] 160	[2130] 240	[2860] 325	[3550] 400	[4260] 480	[4920] 555	[5590] 630	[6220] 705
	61	366	364	362	356	348	338	326	308	289	262
	[18]	[180] 20	[650] 75	[1360] 155	[2100] 235	[2830] 320	[3530] 400	[4250] 480	[4910] 555	[5600] 635	[6240] 705
	68	410	409	407	401	392	382	370	350	329	302
	[20]	[150] 15	[630] 70	[1340] 150	[2070] 235	[2800] 315	[3510] 395	[4240] 480	[4910] 555	[5610] 635	
	76	460	458	456	448	440	429	400 417	396	373	
	[22]	[120]	[620]	[1330]	[2060]	[2790]	[3500]	[4220]	[4910]	[5600]	
	83	15 509	70 506	150 502	235 494	315 484	395 473	475 461	555 438	635 413	
	[25]	[70]	[600]	[1320]	[2050]	[2780]	[3480]	[4210]	[4900]	[5590]	
	95	10 582	70 578	150 573	230 563	315 552	395 540	475 526	555 501	630 474	
	[30]		[560] 65	[1280] 145	[1990] 225	[2700] 305	[3430] 390	[3970] 450	[4640] 525		
	114		693	687	675	661	647	630	600		

Kontinuierlich

Intermittierend 205 cm³/U [12.5 in³/r]

Druckdifferenz bar [PSI] [250] [500][1000][1500][2000][2500][3000][3500][4000][4500]												
		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275	[4500] 310	
	[.5] 1,9	[400] 45 8	[810] 90 5	[1500] 170 1								
	[1]	[410] 45	[830] 95	[1590] 180	[2220] 250	325	[3860] 435	[4560] 515	610	[5510] 625		
	3,8	17	17	16	15	14	12	11	9	3		
	[2] 7,5	[420] 45 36	[850] 95 35	[1680] 190 34	[2410] 270 32	[3140] 355 29	[4060] 460 27	[4800] 540 25	[5420] 610 22	[6000] 680 16	[6210] 700 8	
PM]	[4]	[430] 50 73	100	[1770] 200	[2590] 295	[3410] 385	[4260] 480	[5040] 570	[5730] 645 45	[6340] 715	[6740] 760	
9	15	_	73	71	70	68	61	57	_	35	23	
I/min	[6] 23	[430] 50 107	[880] 100 106	[1800] 205 105	[2620] 295 103	[3530] 400 101	[4370] 495 98	[5170] 585 90	[5900] 665 81	[6590] 745 74	[7100] 800 65	
Schluckstrom I/min [GPM]	[8] 30	[410] 45 144	[870] 100 143	[1820] 205 142	[2660] 300 138	[3560] 400 136	[4410] 500 132	[5240] 590 125	[6020] 680 116	[6770] 765 109		
chluc	[10]	[390] 45	[860] 95	[1820] 205	[2700] 305	[3580] 405	[4460] 505	[5300] 600	[6110] 690	[6890] 780		
0)	38	182	180	179	174	170	166	160	152	143		
	[12] 45	[350] 40 217	[850] 95 216	[1810] 205 215	[2690] 305 211	[3570] 405 202	[4440] 500 200	[5300] 600 194	[6120] 690 185			
	[14]	[330]	_	[1790]	[2670]	[3560]	[4430]	[5290]	[6120]			
	53	35 256	95 254	200 252	300 248	400 243	500 237	600 229	690 219			
	[16]	[290]	[820]	[1770]	[2650]		[4410]	[5280]	[6120]			
	61	35 291	95 290	200 289	300 284	400 280	500 272	595 264	690 253			
	[18]	[270] 30	[810] 90	[1750] 200	[2640] 300	[3520] 400	[4400] 495	[5270] 595	[6120] 690			
	68	329	327	325	321	316	308	298	287			
	[20]	[230] 25	[800] 90	[1730] 195	[2620] 295	[3510] 395	[4380] 495	[5270] 595	[6120] 690			
	76	366	364	362	358	353	345	334	321			
	[22] 83	[190] 20 402	[780] 90 400	[1690] 190 398	[2600] 295 394	[3500] 395 389	[4370] 495 380	[5260] 595 368				
	-	_										
	[25] 95	[150] 15 459	[750] 85 456	[1640] 185 453	[2560] 290 448	[3480] 395 442	[4360] 495 434	[5240] 590 421				
	[30]		[710]	[1540]	[2510]		[4190]	[5030]				
	114		80 546	175 542	285 537	380 529	475 520	570 504				
مده ما	Doton	مصمقيا		- N/o+		11040					_	

245 cm³/U [15.0 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[750] 50	[1000] 70			[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190	[3000] 205	[3250] 225	[3500] 240	[3750] 260	Die Mot
١	[.5]	[460]	[980]														Drel
		50 5	110 2														eine
ŀ	1,9 [1]	[480]		[1490]	[1990]	[2480]	[2970]	[3400]	[3830]	[4250]	[4680]	[5020]					hohen V
	3,8	55 14	110 14	170 14	225	280	335 12	385 12	435 11	480 11	530 10	565 4					maxima
ı	[2]	[500]	[1000]	[1520]	[2040]	[2540]	[3050]	[3420]	[3930]	[4440]	[4900]	[5320]	[5740]	[6160]			daß die
	7,5	55 30	115 30	170 29	230 29	285 28	345 27	385 26	445 24	500 23	555 22	600 20	650 18	695 16	750 14	810 11	aus dem
∀	[4]		[1030]	[1560]	[2080]	[2600]	[3130]	[3630]	[4130]	[4630]	[5120]	[5570]	[6030]	[6480]	[6870]	[7340]	
[GP]	15	60 61	115 61	175 60	235 60	295 59	355 59	410 58	465 56	525 53	580 49	630 47	680 44	730 42	775 39	830 36	
ü	[6]	[510] 60	[1040] 120	[1570] 175	[2100] 235	[2620] 295	[3160] 355	[3660] 415	[4200] 475	[4710] 530	[5220] 590	[5690] 645	[6150] 695	[6620] 750	[7050] 795	[7430] 840	
Ě	23	91	90	90	89	88	88	86	83	80	75	72	70	67	63	59	
Schluckstrom I/min [GPM]	[8]	[500] 55	[1020] 115	[1560] 175	[2110] 240	[2630] 295	[3150] 355	[3680] 415	[4210] 475	[4740] 535	[5250] 595	[5720] 645	[6200] 700	[6670] 755	[7090] 800	[7470] 845	
ncks	30	121	121	120	119	118	117	115	113	111	106	103	99	96	91	87	
ichi	[10]	55	115	175	235	295	355	415	480	540	[5290] 600	650	705	760	805		
,	38 [12]	152 [450]	151 [980]	150	148			145	143		137 [5280]	133	129	125 [6700]	120		
	45	50 183	110 182	175	235 179	295 178	355 178	415	475	540	595	650	705 157	755 152			
	[14]	[420]		1 80				1 76	173 [4200]		166 [5260]	1 61 [5740]		152			
	53	45 213	110 212	170 211	235 210	295	355 208	415	475 203	535	595 195	650 190	705 185				
ı	[16]	[400]	[950]	[1500]	[2040]	[2580]	[3120]	[3660]	[4190]	[4730]	[5250]	[5730]	[6210]				
	61	45 244	105 243	170 242	230 241	290 240	355 239	415 236	475 232	535 229	595 225	650 219	700 213				
	[18]	[380] 45	[930] 105	[1480] 165	[2020] 230	[2560] 290	[3110] 350	[3650] 415	[4180] 470		[5230] 590	[5720] 645	[6200] 700				
	68	275	274	273	272	270	269	266	262	259	254	248	241				
	[20]	[350] 40	[910] 105	[1460] 165	[2000] 225	[2550] 290	[3100] 350	[3640] 410	[4170] 470		[5220] 590	[5710] 645					
	76	305	305	304	303	302	300	296	292	288	283	276					
	[22]	[310] 35	[870] 100	[1420] 160	[1970] 225	[2500] 280	[3050] 345	[3590] 405	[4140] 465	[4680] 530	[5200] 590	[5680] 640					
-	83	337	336	335	334	332 [2460]	330	326	323		313	306					
	[25]	[260] 30	[820] 95	155	220	280	335	400	460	525	585						
	95 [30]	383	382 [680]	381 [1250]	380 [1860]	378 [2390]	376 [2900]	372 [3430]	369 [3960]	365 [4460]	357 [4950]						
	114		75 457	140 456	210 455	270 453	330 450	390 445	445 442	505 437	560 427						
	[35]		401	[1110]	[1740]	[2270]	[2790]	[3340]	[3910]	[4400]	421						
	132			125 532	195 531	255 528	315 525	375 519	440 515	495 509							[19.0 in ³ /r]

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit

 ${\bf hohen\ Wirkungsgrad.\ Zum\ Erreichen\ einer}$ maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt.

[1110] Drehmoment [lb-in] Nm State S

Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

020 0.0 0.0 000					Drucko	lifferenz	z bar [P	SI]								
		[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190	[3000] 205	[3250] 225	[3500] 240	[3750] 260
	[.5] 1,9	[600] 70 4	[1150] 130 2													
Kontinuierlich	[1] 3,8	[620] 70 11	[1270] 145 11	[1920] 215 11	[2560] 290 10	[3170] 360 10	[3780] 425 10	[4290] 485 9	[4900] 555 9	[5490] 620 9	[6080] 685 8	[6670] 755 8	[7270] 820 7	[7880] 890 7	[8490] 960 6	[9080] 1025 5
Intermittierend	[2] 7,5	[630] 70 23	[1280] 145 23	[1940] 220 22	[2590] 295 22	[3230] 365 21	[3830] 435 21	[4450] 505 20	[5070] 575 20	[5680] 640 19	[6300] 710 18	[6910] 780 18	[7530] 850 17	[8160] 920 17	[8790] 995 16	[9420] 1065 15
GPM]	[4] 15	[640] 70 47	[1290] 145 47	[1960] 220 46	[2640] 300 46	[3290] 370 45	[3940] 445 45	[4600] 520 44	[5240] 590 44	[5880] 665 43	[6510] 735 42	[7150] 810 42	[7790] 880 41	[8450] 955 41	[9100] 1030 40	
Schluckstrom l/min [GPM]	[6] 23	[650] 75 71	[1300] 145 71	[1970] 225 70	[2660] 300 70	[3320] 375 69	[4000] 450 69	[4680] 530 68	[5330] 600 67	[5980] 675 66	[6630] 750 64	[7280] 825 64	[7940] 895 63			
skstrom	[8] 30	[640] 70 96	[1300] 145 96	[1980] 225 95	[2670] 300 95	[3350] 380 94	[4030] 455 94	[4710] 530 93	[5360] 605 92	[6020] 680 91	[6670] 755 89	[7320] 825 88				
Schluc	[10] 38	[620] 70 121	[1280] 145 120	[1970] 225 120	[2660] 300 119	[3340] 375 119	[4070] 460 118	[4740] 535 117	[5390] 610 116	[6050] 685 115	[6710] 760 112	[7370] 835 109				
	[12] 45	[600] 70 145	[1260] 140 144	[1940] 220 144	[2630] 295 143	[3340] 375 142	[4040] 455 142	[4730] 535 141	[5390] 610 140	[6060] 685 139	[6720] 760 135					
	[14] 53	[570] 65 169	[1240] 140 169	[1920] 215 168	[2600] 295 168	[3310] 375 167	[4000] 450 167	[4710] 530 165	[5380] 610 164	[6060] 685 163	[6730] 760 159					
	[16] 61	[540] 60 193	[1230] 140 193	[1900] 215 192	[2580] 290 192	[3280] 370 190	[3970] 450 189	[4700] 530 188	[5380] 610 187	[6050] 685 185						
	[18] 68	[490] 55 217	[1210] 135 217	[1880] 210 216	[2550] 290 216	[3240] 365 214	[3930] 445 213	[4680] 530 211	[5370] 605 209	[6040] 680 207						
	[20] 76	[450] 50 242	[1190] 135 242	[1860] 210 242	[2520] 285 241	[3210] 365 240	[3900] 440 238	[4670] 530 236	[5360] 605 234	[6030] 680 232						
skosität	[22] 83	[420] 45 267	[1130] 130 266	[1820] 205 266	[2520] 285 265	[3180] 360 264	[3870] 440 262	[4640] 525 260	[5320] 600 258							
Motor	[25] 95			[1780] 200 302	[2510] 285 301	[3160] 355 300	[3820] 430 299	[4590] 520 296	[5280] 595 293							
	[30]				[2420] 275 360	[3100] 350 359	[3720] 420 358	[4500] 510 354	[5140] 580 351							
	[35] 132			[1580] 180 422	[2360] 265 420	[2950] 335 419	[3540] 400 418	[4390] 495 413								
ı																

395 cm³/U [24.0 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[750] 50	[1000] 70		[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190			[3500] 240
	[.5] 1,9	[700] 80 4	[1340] 150 2												
	[1] 3,8	[750] 85 9	[1430] 160 9	[2110] 240 8	[2770] 315 8	[3460] 390 8	[4170] 470 7	[4890] 550 7	[5610] 635 7	[6310] 715 5	[7010] 790 4	[7700] 870 2			
	[2] 7,5		[1500] 170 18	[2290] 260 17	[3030] 340 16		[4620] 520 15		[6000] 680 14			[8240] 930 12	[8990] 1015 11	[9730] 1100 10	[10470] 1185 8
3PM]	[4]	[860] 95 38	[1630] 185 38	[2470] 280 37	_	[4120] 465 36			[6390] 720 34			[8780] 990 32		10	8
/min [([6] 23		[1690] 190 57	[2540] 285 56		[4180] 470 54			[6580] 745 50			32			
Schluckstrom I/min [GPM]	[8]	[840] 95 76	[1680] 190 76	[2550] 290 75		[4260] 480 73			[6650] 750 68	[7480] 845 66	41				
Schluc	[10] 38	[800] 90 95	[1680] 190 95	[2550] 290 94		[4260] 480 92			[6730] 760 86	[7560] 855 84					
	[12] 45	[760] 85 114	[1660] 190 114	[2520] 285 113		[4270] 480 111			[6690] 755 105	04					
	[14] 53	[740] 85 133		[2490] 280 132		[4260] 480 130			[6650] 750 124						
	[16] 61	[710] 80 153	[1620] 185 153	[2460] 280 152		[4240] 480 149									
	[18] 68	[680] 75 172	[1600] 180 172	[2430] 275 171	[3340] 375 170		[5060] 570 166	[5810] 655 164							
	[20] 76	[610] 70 192	[1580] 180 191	[2400] 270 190		[4210] 475 187									
	[22]			_	[3220] 365 208	_									
	[25] 95				[3080] 350 236										
	[30]	200	[1080] 120	[1650] 185	[2270] 255	[3020] 340	[3850] 435	200							
	[35]		285	284 [1520] 170	282 [2120] 240	281 [2870] 325	279 [3760] 425								
	132 [40]			331	[2050]	328 [2790]	325 [3620]								
Į	151				230 376	315 374	410 371								
					//										

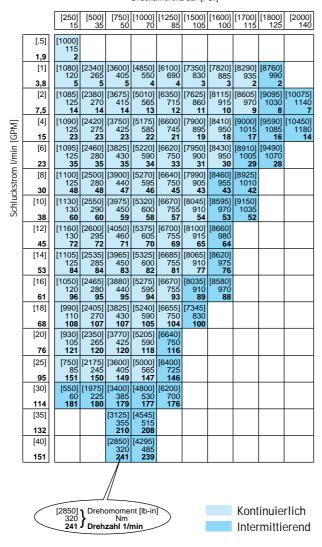
Kontinuierlich
Intermittierend

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig,

daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

> 495 cm³/U [30.0 in³/r] Druckdifferenz bar [PSI]

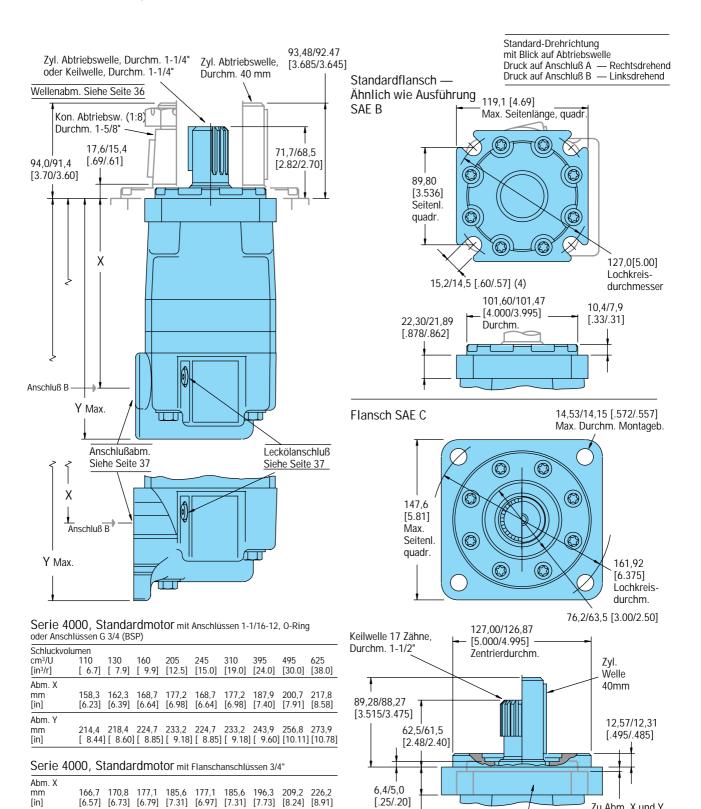
		[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170
	[.5]	[800] 90	[1750] 200								
	1,9	3	1								
	[1] 3,8	[880] 100 7	[1875] 210 6	[2875] 325 6	[3825] 430 5	[4775] 540 4	[5720] 645 3	[6670] 755 2	[7600] 860 1		
	[2]	[905]	[1940]	[2975]	[3990]	_	[6010]	_	[80008]	[8980]	
	1 1	100	220	335	450	565	680	790	905	1015	
	7,5	18	17	17	16	15	12	11	10	8	
3PM]	[4] 15	[935] 105 30	[2005] 225 29	[3075] 345 28	[4160] 470 27	[5245] 595 26	[6300] 710 23	[7355] 830 21	[8375] 945 19	[9400] 1060 17	[10350] 1170 14
) L	[6]	[920]	[2010]	[3100]		[5265]	[6345]	[7420]	[8445]	[9465]	14
Schluckstrom I/min [GPM]	23	105 45	225 44	350 43	475 42	595 40	715 37	840	955 32	1070	
mo.	[8]	[905]	[2015]			[5290]	[6385]	[7485]	[8510]		
kstr	30	100 61	230 60	355 59	475 57	600 55	720 52	845 49	960 46		
nluc	[10]	[880]		[3095]		[5295]	[6390]	[7480]	[8525]		
Sct	38	100 76	225 75	350 74	475 72	600 70	720 66	845 63	960 59		
	[12]	[860]	[1975]			[5305]	[6390]	[7475]	39		
		95	225	350	475	600	720	845			
	45	91	90	89	87	85	81	77			
	[14]	[830] 95	[1945] 220	[3055] 345	[4165] 470	[5275] 595	[6360] 720	[7445] 840			
	53	106	105	104	102	100	96	92			
	[16]	[805] 90	[1910] 215	[3020] 340	[4130] 465	[5245] 595	[6330] 715	[7420] 840			
	61	122	120	119	117	115	111	107			
	[18]	[740]	[1860]	[2980]	[4105]	[5235]	[6305]	[7380]			
	68	85 137	210 136	335 134	465 132	590 130	715 125	835 121			
	[20]	[680]	[1810]	[2940]		[5225]	[6285]				
	76	75 153	205 152	330 150	460 147	590 145	710 140				
	[25]	[570]	[1665]	[2800]	[4005]	[5210]	[6135]				
		65	190	315	455	590	695				
	95	191	189	187	184	182	177				
	[30]		[1520] 170	[2645] 300	[3765] 425	[4885] 550	[5985] 675				
	114		228	226	223	220	215				
	[35]			[2400] 270	[3510] 395						
	132			265	263						
	[40]			[2155]	[3260]						
	151			245 305	370 303						


Die Leistungen gelten für eine Öl-Viskosität von 25 cSt.

[2050] Drehmoment [lb-in]
230 Nm
376 Drehzahl 1/min

Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

625 cm³/U [38.0 in³/r] Druckdifferenz bar [PSI]



Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

Abm. Y

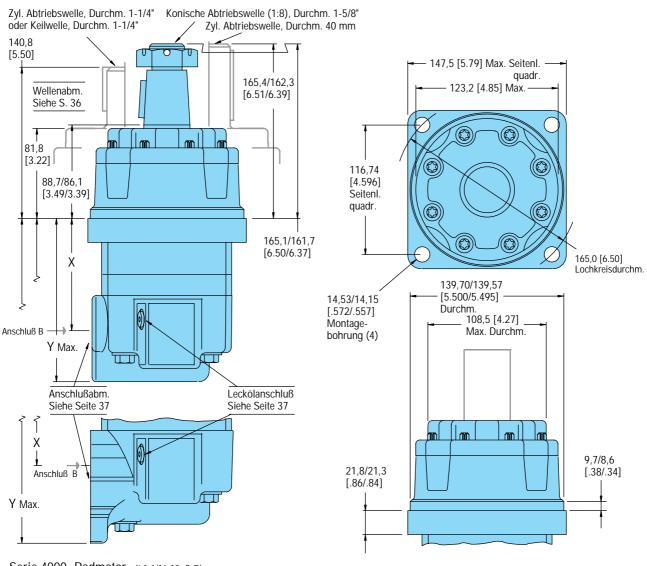
Abmessungen Serie 4000, Standardmotor

26,54/26,03

[1.045/1.025]

Vergleich

SAE B/ SAE C-Flansch


Zu Abm. X und Y

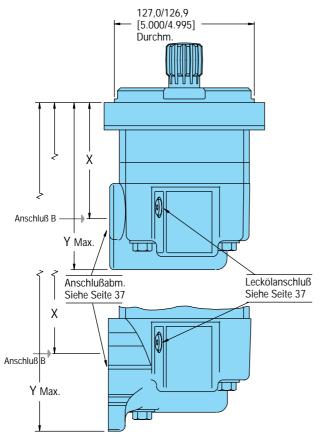
4,2 [.17] addieren

(siehe Tabelle links)

Abmessungen Serie 4000, Radmotor

Serie 4000, Radmotor mit 1-1/16-12, O-Ring oder Anschlüssen G 3/4 (BSP)

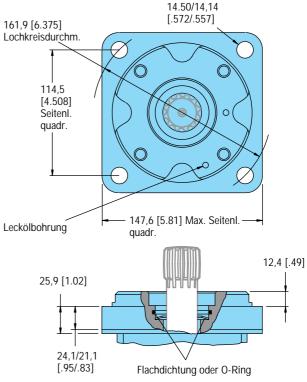
		•	,						
Schluckvolu cm ³ /U [in ³ /r]	110	130 [7.9]	160 [9.9]	205 [12.5]	245 [15.0]	310 [19.0]	395 [24.0]	495 [30.0]	625 [38.0]
Abm. X mm [in]	87,4 [3.45]	91,5 [3.60]	97,8 [3.85]		97,8 [3.85]		117,0 [4.61]	129,9 [5.12]	147,0 [5.79]
Abm. Y mm [in]	143,3 [5.64]	147,3 [5.80]			153,6 [6.05]			185,8 [7.31]	202,8 [7.98]


Serie 4000, Radmotor mit Flanschanschlüssen 3/4"

Abm. X mm [in]	95,1 [3.75]						124,7 [4.91]		
Abm. Y mm							204,1		
[in]	[6.87]	[7.03]	[7.28]	[7.61]	[7.28]	[7.61]	[8.03]	[8.54]	[9.21]

Standard-Drehrichtung mit Blick auf Abtriebswelle Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

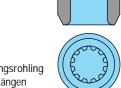
Abmessungen Serie 4000, Bearingless Motor



Serie 4000, Bearingless Motor mit Anschlüssen 1-1/16-12, 0-Ring oder Anschlüssen G 3/4 (BSP)

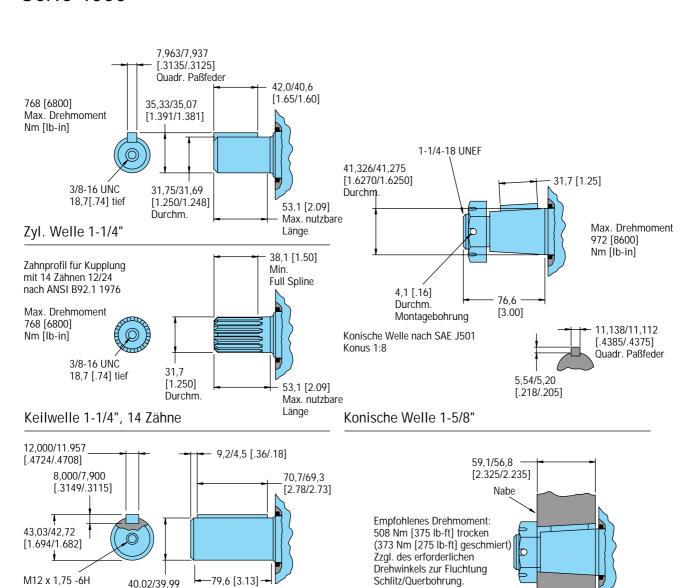
,									
Schluckvolu cm ³ /U [in ³ /r]	110	130 [7.9]	160 [9.9]	205 [12.5]	245 [15.0]	310 [19.0]	395 [24.0]	495 [30.0]	625 [38.0]
Abm. X mm [in]	91,0 [3.59]	95,1 [3.75]		109,9 [4.33]				133,5 [5.26]	
Abm. Y mm [in]	146,8 [5.78]	150,8 [5.94]	157,1 [6.19]	165,7 [6.52]	157,1 [6.19]				

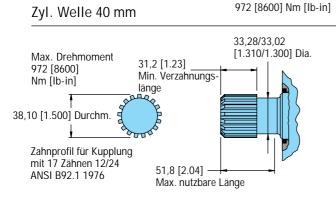
Serie 4000, Bearingless Motor mit Flanschanschlüssen 3/4"


Abm. X mm [in]	99,4 [3.92]	109,8 [4.33]			
Abm. Y mm [in]		189,1 [7.44]			

Standard-Drehrichtung mit Blick auf Abtriebswelle Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

Information bzgl. der Anwendung von Bearingless Motoren der Serie 4000 erhalten Sie bei Ihrer Eaton-Vertretung (passende Kupplungsrohlinge sind bei der Eaton Corporation erhältlich).

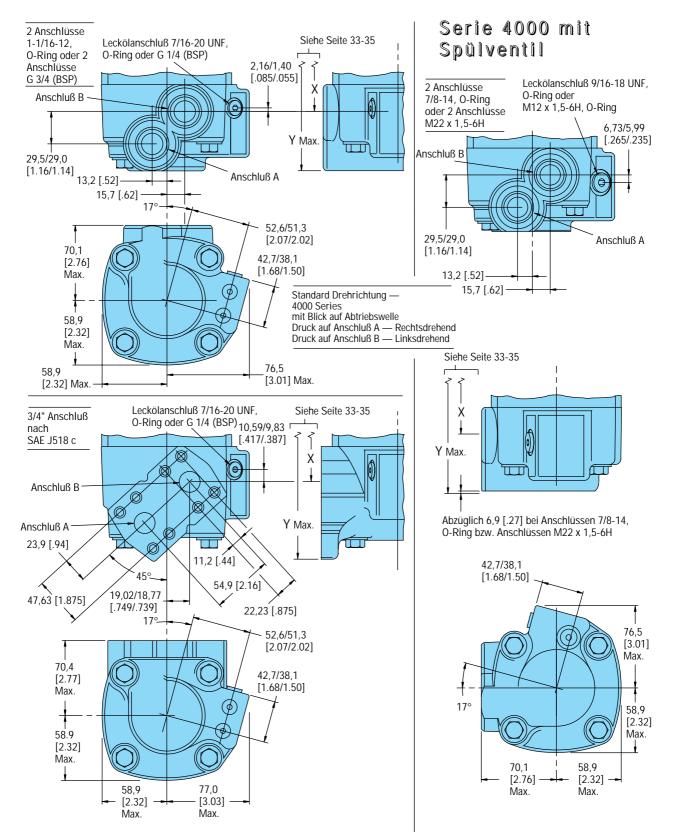

Hinweis: Nach dem maschinellen Bearbeiten des Rohlings muß das Teil gemäß Eaton-Spezifikation gehärtet werden.



Passender Kupplungsrohling in verschiedenen Längen Eaton Teilenummer 13307-xxx

Abmessungen der Abtriebswellen Serie 4000

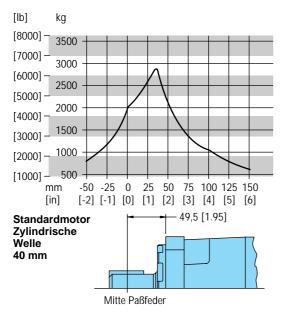
[1.576/1.575] Durchm.

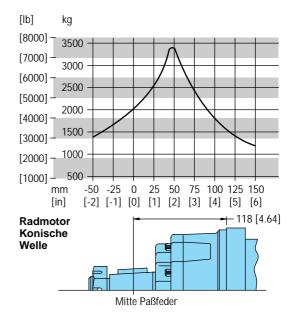

Max. nutzbare Länge

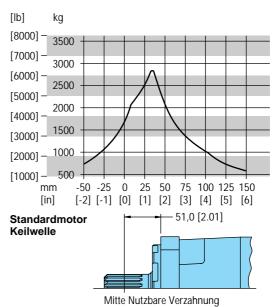
Max. Drehmoment

24,9 [.98] tief

Abmessungen der Hydraulikanschlüsse Serie 4000


Wellenbelastung Serie 4000


Die Diagramme auf dieser Seite zeigen die zulässigen Radialkräfte auf die Abtriebswelle(n) bezogen auf verschiedene Kraftangriffspunkte.


Das Diagramm basiert auf einer Lagerlebensdauer L 10 (2000 Stunden oder 12.000.000 Wellenumdrehungen bei 100 1/min) bei Nenndrehmoment. Zur Ermittlung der Radialkräfte bei anderen Drehzahlen als 100 1/min sind die im Lagerdiagramm angegebenen Belastungswerte mit den in nachstehender Tabelle aufgeführten Faktoren zu multiplizieren.

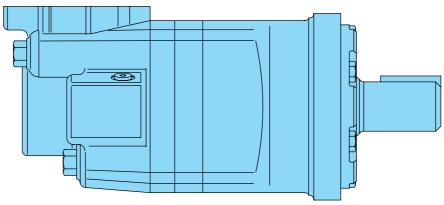
1/min	Multiplikationsfaktor	
50	1.23	
100	1.00	
200	.81	
300	.72	
400	.66	
500	.62	
600	.58	
700	.56	
800	.54	

Bei 3.000.000 Wellenumdrehungen oder 500 Stunden erhöhen sich diese Wellenbelastungen um 52%.

Produktnummern Serie 4000

Produktnummern—Serie 4000

Die 3-stellige Kennzahl 109-, 110-, oder 111- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel: 111-1057. Bestellungen ohne die 3-stellige Kennzahl können nicht bearbeitet werden.


111-1057

			Schluck	volumen c	m³/U [in³/r] und	Produk	ktnummer			
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	110 [6.7]	130 [7.9]	160 [9.9]	205 [12.5]	245 [15.0]	310 [19.0]	395 [24.0]	495 [30.0]	625 [38.0]
	40mm zyl.	G 3/4 (BSP)	109-1249	-1248	-1247	-1231	-1245	-1246	-1236	-1234	-1235
4-Loch Flansch ISO 125	1 5/8" konisch 1:8	G 3/4 (BSP)	109	-	-	-1255	-1259	-1260	-1261	-1262	-
	1 1/2" Vielkeil 17 Z.	G 3/4 (BSP)	109	-	-	-1254	-1256	-1265	-1257	-1258	-
4-Loch Flansch SAE C	40mm zyl.	G 3/4 (BSP)	109-1184	-1185	-1227	-1224	-1225	-1189	-1190	-1267	-
	1 5/8" konisch 1:8	G 3/4 (BSP)	109	-	-	-	-	-1211	-	-	-
	1 1/2" Vielkeil 17 Z.	G 3/4 (BSP)	109-1191	-1192	-1193	-1194	-1195	-1196	-	-	-
Radmotor	40 mm zyl.	G 3/4 (BSP)	109-1146	-1109	-1110	-1111	-1112	-1113	-1125	-	-
4-Loch Flansch	1 5/8" konisch 1:8	G 3/4 (BSP)	109	-	-	-	-1136	-	-	-	-
Bearingless	S	G 3/4 (BSP)	110-1052	-1053	-1054	-1055	-1056	-1057	-1058	-	-

Die nicht in dieser Tabelle aufgeführten Motoren der Serie 4000 sind mit Hilfe des Modellschlüssels auf Seite 73 zu spezifizieren.

Technische Daten Serie 6000

Technische Daten—Serie 6000

Schluckvolumen cm ³ /U [in ³ /r]			195 [11.9]	245 [15.0]	310 [19.0]	390 [23.9]	490 [30.0]	625 [38.0]	985 [60.0]
Max. Drehzahl (1/min)		Kontinuierlich	775	615	485	387	307	241	153
Schluckstrom		Intermittierend	866	834	698	570	454	355	230
Schluckstrom I/min		Kontinuierlich	150 [40]	150 [40]	150 [40]	150 [40]	150 [40]	150 [40]	150 [40]
[GPM]		Intermittierend	170 [45]	210 [55]	225 [60]	225 [60]	225[60]	225 [60]	225 [60]
Drehmoment Nm [lb-in]	$\stackrel{\wedge}{\boxtimes}$	Kontinuierlich	575 [5100]	735 [6510]	930 [8230]	1155 [10230]	1445 [12800]	1380 [12195]	1685 [14920]
Konische Welle 1 - 3/4"		Intermittierend	860 [7620]	1100 [9740]	1355 [11990]	1635 [14490]	1885 [16670]	1378 [12195]	1873 [16580]
Druckdifferenz bar [PSI]		Kontinuierlich	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	140 [2000]	140 [2000]
Konische Welle	¥	Intermittierend	310 [4500]	310 [4500]	310 [4500]	310 [4500]	275 [4000]	170 [2250]	140 [2000]
1 - 3/4"		Spitze	310 [4500]	310 [4500]	310 [4500]	310 [4500]	310 [4500]	225 [3250]	170 [2250]
Maximaler Gehäusedruc	k ohn	e Leckölabführu	ng * — 70 bar	[1000 PSI]					

Ein maximales Drehmoment bei gleichzeitiger hoher Drehzahl ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb siehe Leistungsdaten auf Seite 39-40.

- Maximales Drehmoment bei 40 mm Welle 1325 Nm [11750 lb-in] bei kontinuierlichem Betrieb, 1650 Nm [14600 lb-in] bei intermittierendem Betrieb.
 - * Bei einem kontinuierlichen Rücklaufdruck von über 70 bar [1000 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen sind so zu montieren, daß das Motorgehäuse stets gefüllt ist.

 $Maximaler\ Eingangsdruck -- 310\ bar\ [4500\ PSI].\ Die\ vorgegebene\ Druck differenz\ (siehe\ Tabelle\ oben)\ darf\ nicht\ überschritten\ werden.$

* Maximaler Rücklaufdruck — 310 bar [4500 PSI]. Die vorgegebene Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden. Druckdifferenz — Differenz zwischen Eingangs- und Rücklaufdruck.

Kontinuierlicher Betrieb — Der Motor kann mit diesen Daten im Dauerbetrieb gefahren werden.

Intermittierender Betrieb — Zul. Betriebsbereich während 10% jeder Minute.

Spitzenbetrieb — Zul. Betriebsbereich während 1% jeder Minute.

Empfehlung für Druckflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl. Viskosität nicht unter 13 cSt, bei Betriebstemperatur (siehe Seite 69).

Empfehlung für max. System
temperatur — 82° C [180° F].

Empfehlung für Ölfilterung — Entsprechend ISO-Reinheitsklasse 18/13.

Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30% der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

Leistungsdaten Serie 6000

195 cm³/U [11.9 in³/r]

[500] [1000] [1500] [2000] [2500] [3000] [3500] [4000] [4500] 35 70 105 140 170 205 240 275 310 [.5] [280] [650] 75 1450] 165 [2290 260 **1,9** [2] [290 35 **3**8 [1500] 170 **35** [2340] [3100] 265 350 34 30 [3880] 440 **2**6 [300] 35 **77** [710] [1500] 80 175 **76 74** [2390] 270 **72** [3210] 365 66 [4600] 520 **46** [5790] 655 **18** [4] 15 [4120] 465 **119** [4810] 545 **116** [3280] 370 **131** [6250] 705 **83** [8] [310 Schluckstrom I/min [GPM] 35 **15**4 153 [12] [750] 85 **230** [1610] 180 **225** [3330] 375 **212** [4190] 475 **203** [320 [2480 280 **221** 232 [16] [300] [730] 80 [1600] 180 **303** [2470] [3340] 280 375 **300 291** [4210] 475 **283** [5090] 575 **258** [5900] 665 **23**6 [6710] 760 **214** [7470] 845 **181** 61 307 [2460] 280 **374** 4240] 480 **356** [5100] 575 **332** [20] 1590] 180 **379** [720] 80 76 [6810] 770 **363** [240] 25 **465** [1570] 175 **456** [2440] 275 **450** [5080] 575 **413** [4220] 475 **429** [24] [700] 80 **462** 375 **440** 91 3300 375 **514** [190] 20 **542** 1530] 175 **532** 2400 270 **526** [4200] 475 **502** 5060 570 **476** 810] 770 **421** 539 106 [160] 20 **620** [630] 70 **617** [1500] 170 **609** [2370] [3270] 270 370 **602 589** [4160] 470 **576** [32] 121 [36] [2350] 265 **674** [4130] 465 **645** 5000] 565 **601** 365 **659** 665 **564** 136 697 692 683 1450] 165 **759** [3210] 365 **733** 4100] 465 **718** [40] 2320] 260 **749** [80] 10 [840] 660 **624** 770 151 [45]

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

[50]

189 [60]

227

310 cm³/U [19.0 in³/r]

[5790] Drehmoment [lb-in] Nm Nm Drehzahl I/min

685 **55**1

540] 515 **684**

245 cm³/U [15.0 in³/r]

		[250]	[600]	[1000]	[1500]	[2000]	[2500]	[2000]	135001	[4000]	[4500]
		[250] 15	[500] 35	70	105	140	170	205	240	275	310
	[.5]	[430] 50	95	[1890] 215							
	1,9	7	4	1							
	[2] 7,5	[440] 50 30	[900] 100 29	[1940] 220 26	[2990] 340 24	[3960] 445 21	[4920] 555 17	[5040] 570 11	[5930] 670 6		
	[4]	[460]	[940]	[2000]	[3060]	[4080]		[5680]	[6630]	[7570]	[8520]
	15	50 61	105	225 56	345 54	460 48	575 42	640 39	750 30	855 12	965 6
	[8]	[470]	[960]	[2060]	[3150]	[4210]	[5260]	[6180]	[7100]	[8020]	[9020]
[GPN	30	55 122	110 120	235 116	355 113	475 104	595 95	700 81	800 67	905 53	1020 37
i.	[12]	[480]	[970]	[2080]	[3180]		[5360]		[7420]	[8450]	[9510]
I/m	45	55 183	110 182	235 178	360 174	480 165	605 157	720 141	840 125	955 109	1075 92
om	[16]	[450]	[960]	[2070]	[3180]	[4290]	[5420]	[6480]	[7490]	[8480]	[9540]
str	61	50 245	110 244	235 240	360 236	485 228	610 221	730 202	845 184	960 165	1180 145
Schluckstrom I/min [GPM]	[20]	[420]	[940]	[2050]	[3160]	[4290]		[6510]	[7580]	[8660]	[9740]
		45	105	230	355	485	615	735	855	980	1100
	76	307	306	301	297	287	277	257	238	218	197
	[24]	[380] 45	[920] 105	[2020] 230	[3120] 355	[4260] 480	[5400] 610	[6490] 735	[7590] 860	[8680] 980	
	91	368	365	361	358	348	338	316	294	271	
	[28]	[330]		[1980]	[3100]	[4240]		[6480]	[7580]	[8670]	
	106	35 430	100 426	225 421	350 416	480 404	610 376	730 358	855 340	980 322	
	[32]	[290]	[800]	[1920]	[3050]	[4170]		[6410]	[7520]	[8640]	
		35	90	215	345	470	600	725	850	975	
	121	491	489	481	475	461	448	423	398	373	
	[36]	[250] 30	[730] 80	[1850] 210	[2980] 335	[4060] 460	[5150] 580	[6300] 710	[7440] 840		
	136	556	549	543	537	524	509	482	456		
	[40]	[200] 25	690] 80	[1790] 200	[2940] 330	[4010] 455	[5130] 580	[6190] 700	[7100] 800		
	151	615	612	606	599	585	570	540	510		
	[45]		[570] 65	[1760] 200	[2860] 325	[3960] 445	[5070] 575	[6080] 685	[6690] 755		
	170		688	682	674	658	641	608	574		
	[50]			[1720]	[2800]	[3890]	[4920]	[5940]			
	189			195 758	315 749	440 731	555 712	670 676			
	[55]			[1670]	[2740]	[3820]	[4890]	[5880]			
	208			190 834	310 824	430 804	550 783	665 744			
				30 1		30 .	700				

390 cm³/U [23.9 in³/r]

Kontinuierlich

Intermittierend

	Druckumerenz bar [F31]										
		[250] 15	[500] 35	[1000] 70	[1500] 105		[2500] 170	[3000] 205	[3500] 240	[4000] 275	[4500] 310
	[1]	[760] 85	[1570] 175	[3230] 365							
	3,8 [2]	[700]	[4.04.0]	[3270]	[4040]	[0.4.40]	[7760]	[9080]	[40500]		
	7,5	[780] 90 19	[1610] 180 18	370 370	[4910] 555 16	[6440] 730 14	[7760] 875 12	1025	[10590] 1195 4		
	[4]	[800]	[1640]	[3300]	[4970]	[6570]	[8160]	[9570]	[11270]	[12120]	[14490]
[Mc	15	90	185 38	375 37	560 35	740 33	920 29	1080 22	1275 14	1370 5	1635 1
	[8]	[810] 90	[1650]	[3370]	[5080]	[6740] 760	[8430] 950	[10050] 1135	[11620]	[12880]	[14480] 1635
GP.	30	77	185 76	380 74	575 72	68	950 65	55	1315 45	1455 33	21
nin	[12]	[800] 90	[1620] 185	[3390] 385	[5130] 580	[6810] 770	[8520] 965	[10190] 1150	[11860] 1340	[13640] 1540	
7	45	115	115	112	109	105	100	91	81	79	
Schluckstrom I/min [GPM]	[16]	[750] 85	[1600] 180	[3380] 380	[5120] 580	[6820] 770	[8560] 965	1155	[11920] 1345		
황	61	154	154	151	147	143	132	126	116		
Schlı	[20] 76	[680] 75 193	[1580] 180 193	[3360] 380 189	[5120] 580 187	[6840] 775 182	[8590] 970 175	[10280] 1160 162	[11980] 1355 152		
	[24]	[620]	[1520]	[3280]	[5060]	[6780]	_	[10240]	.02		
	91	70 232	170 230	370 229	570 225	765 220	965 212	1155 204			
	[28]	[570] 65	[1460] 165	[3210] 365	[5000] 565	[6730] 760	[8480] 960	[10200] 1150			
	106	270	268	266	261	256	248	236			
	[32]	[530] 60	[1420] 160	[3140] 355	[4930] 555	[6640] 750	[8380] 945	[10120] 1145			
	121	309	306	304	299	292	282	269			
	[36]	[450] 50	[1370] 155	[3010] 340	[4840] 545	[6500] 730	[8250] 930	[10000] 1130			
	136	348	346	340	336	329	317	301			
	[40]	[380] 45	[1320] 150	[2880] 325	[4740] 535	[6460] 730	[8120] 915				
	151	387	386	380	375	368	359				
	[50]		[1140] 130	[2650] 300	[4540] 515	[6440] 730	[8050] 910				
	1 89		482	475 [2460]	469 [4430]	460 [6360]	449 [7860]				
	227			280	500 562	720 552	890				
	221			570	362	352	538				
chlic	hlichen Daten können von Motor zu Motor geringfügig variieren.										

Leistungsdaten Serie 6000

490 cm³/U [30.0 in³/r] Druckdifferenz bar [PSI]

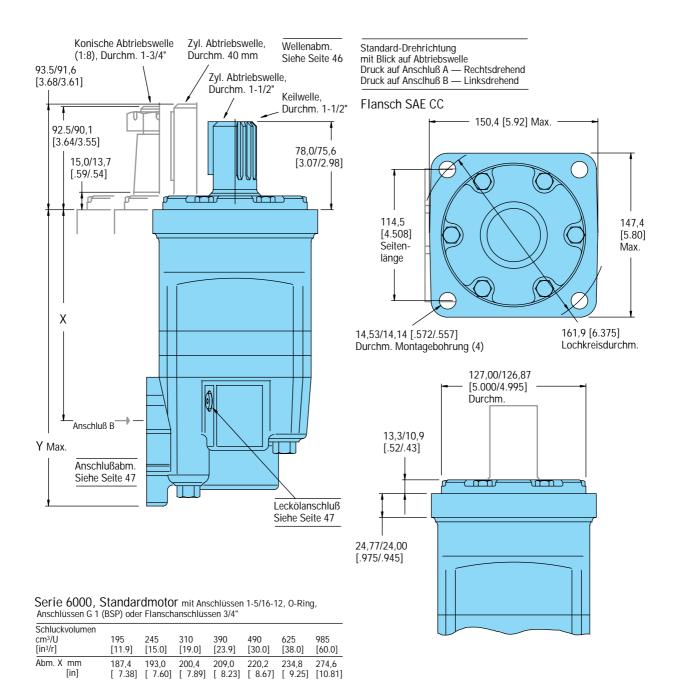
		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275
	[1]	[1010] 115	[1200] 235	[4260] 480	[6140] 695					
	3,8	7	7	5	3					
	[2]	[1020] 115	[2110] 240	[4270] 480	[6280] 710	[8350] 945	[10420] 1175	[12140] 1370		
	7,5	15	14	13	12	11	8	3		**********
	[4] 15	[1030] 115 30	[2100] 235 30	[4280] 485 29	[6410] 725 28	[8500] 960 27	[10590] 1195 25	[12500] 1410 21	[14580] 1645 17	[16670] 1885 12
M	[8]	[1020] 115	[2090] 235	[4290] 485	[6490] 735	[8620] 975	[10740] 1215	[12800] 1445	[14930] 1685	
<u>5</u>	30	60	60	59	57	54	51	45	38	
Schluckstrom I/min [GPM]	[12] 45	[1000] 115 91	[2080] 235 91	[4290] 485 89	[6500] 735 87	[8650] 975 84	[10800] 1220 79	[12890] 1455 71		
kstron	[16] 61	[110] 960 122	[2060] 235 122	[4260] 480 121	[6480] 730 118	[8650] 975 114	[10820] 1220 109	[12900] 1460 100		
<u> </u>	[20]	[900]	[1980]	[4180]	[6420]	[8620]	[10820]	100		
Sch	76	100 153	225 152	470 150	725 147	975 144	1220 139			
	[24]	[850] 95	[1930] 220	[4150] 470	[6390] 720	[8580] 970	[10770] 1215			
	91	184	184	181	180	176	171			
	[28] 106	[740] 85 215	[1840] 210 214	[4070] 460 211	[6290] 710 208	[8500] 960 204	[10720] 1210 198			
	[32]	[690] 80	[1710] 195	[3970] 450	[6190] 700	[8420] 950	[10660] 1205			
	121	245	244	241	237	232	226			
	[36] 136	[670] 75 276	[1560] 175 275	[3860] 435 272	[6080] 685 265	[8340] 940 260	[10420] 1175 255			
	[40]	[570] 65	[1400] 160	[3750] 425	[5970] 675	[8140] 920	[10180] 1150			
	151	307	306	303	295	290	284			
	[50] 189		[1140] 130 382	[3240] 365 379	[5220] 590 369	[7620] 860 362				
	[60]			[2860]	[4860]	[7140]				
325 550 805 454 442 435										
,		[2860]	/	momen	t [lb-in]	_		Ko	ontinui	ierlich
		325 454	}	Nm zahl 1/ı)				tierend

625 cm³/U [38.0 in³/r] Druckdifferenz bar [PSI]

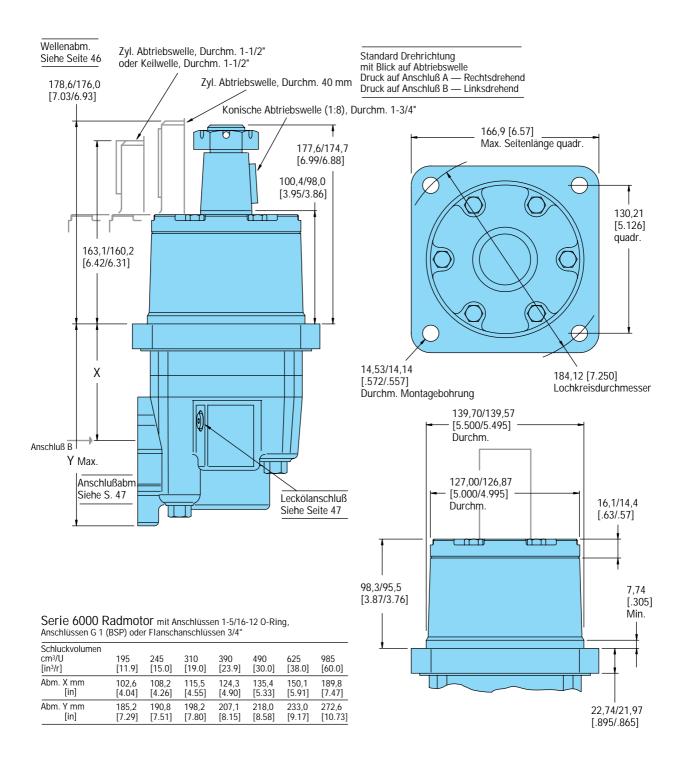
		[OFO]	[500]	[750]	[4000]	[4050]	[4 500]	[4750]	100001	100501
		[250] 15	[500] 35	50	70	[1250] 85	105	120	[2000] 140	[2250] 170
	[1]	[1060] 120	[2205] 250	[3350] 380	[4515] 510	[5680] 640	[6690] 755			
	3,8	5	250 5	4	4	3	755			
	[2]	[1090]	[2300]	[3510]	[4720]	[5930]		[8195]	[9360]	[10530]
	7,5	125 12	260 12	395 13	535 13	670 10	795 1 0	925	1060 6	1190 4
	[4]	[1145]	[2450]	[3750]	[5052]	[6300]		[8465]	[9410]	[10585]
	15	130 24	275 24	425 24	570 24	710 22	850 21	955 18	1065 16	1195 15
_	[8]		[2600]		[5350]	_	_	_	[11220]	
Σ	[o]	[1195] 135	295	[4000] 450	605	755	925	1095	1270	[12035] 1360
GP.	30	45	45	44	44	43	42	39	37	36
jn [[12]		[2600]	[4000]		[6780]			[11770]	
/m	45	135 72	295 72	450 71	610 71	765 70	920 68	1125 66	1330 64	1380 63
π_	[16]	[1120]		[3935]	[5340]	_			[11740]	[12165]
5		125	285	445	605	760	915	1120	1325	1375
cst	61	94	94	93	92	91	89	87	85	83
JC.	[20]		[2465]	[3880]	[5285]	[6695]	[8080]		[11725]	[12150]
Schluckstrom I/min [GPM]	76	120 120	280 119	440 118	595 117	755 116	915 115	1120 112	1325 110	1375 107
Š	[24]	[950]	[2365]	[3785]	[5180]	[6575]	_	[9845]	[11705]	[12135]
		105	265	430	585	745	905	1110	1320	1370
	91	144	143	142	140	139	138	135	132	130
	[28]	[855] 95	[2255] 255	[3660] 415	[5080] 575	[6500] 735	[7915] 895	[9775] 1105	[11640] 1315	[12075] 1365
	106	169	168	166	165	164	162	159	156	153
	[32]	[730]	[2140]	[3550]	[4960]			[9640]	[11505]	[11940]
	121	80 193	240 192	400 190	560 188	720 187	880 185	1090 182	1300 179	1350 176
	[36]		[1965]	[3375]	[4780]	_		[9300]	113	170
		65	220	380	540	700	855	1050		
	136	217	216	214	213	212	210	207		
	[40]	[380]	[1790]	[3200]	[4600]	[6000]		[8965]		
	151	241	200 240	360 239	520 238	680 237	835 236	1015 233		
	[50]		0	[2765]	[4180]	[5595]	[6985]			
				310	470	630	790			
	189	\vdash		298	296	294	290		_	
	[60]			[2270] 255	[3800] 430	[5200] 590	[6600] 745			
	227			355	353	350	345			

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

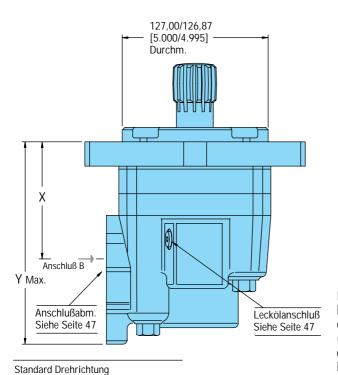
Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren. 985 cm³/U [60.0 in³/r] Druckdifferenz bar [PSI]


			[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140
	[1] 3,8		[1890] 215 3	[4110] 465 3	[5730] 645 2	[7640] 865 2	[9550] 1080 1			
	_	ł		_				[40500]	[40000]	[4 4000]
	[2] 7,5		[1910] 215 8	470 470 8	710 710 7	940 7	[10420] 1175 6	1410	1565	1685 3
	[4]	Ì	[1980]	[4290]	[6480]	[8540]	[10670]	[12800]	[13900]	
	15		225 15	485 1 5	775 15	965 14	1205 14	1445 13	1570 13	1790 12
=	[8]	ſ	[2030]	[4400]	[6630]	[8790]	[10940]	[13090]	[14500]	[16580]
[GPN	30		230 30	495 30	750 30	995 29	1235 28	1480 27	1640 26	1875 25
.⊑	[12]		[2020]	[4390]			[11050]			
m/l r	45		230 45	495 45	750 45	1000 44	1250 43	1495 42	1700 41	
stron	[16]		[2010] 225	[4320] 490	[6560] 740	[8790] 995	[11000] 1245	[13260] 1500		
쏤	61	ı	61	61	61	60	59	58		
Schluckstrom I/min [GPM]	[20]		215	475	730	985	[10950] 1235	[13160] 1485		
0,	76	ļ	77	77	76	76	75	74		
	[24]		[1810] 205	[4060] 460	705	960	[10790] 1220	[12990] 1470		
	91	ŀ	92	92	92	91	90	89		
	[28]		[1620] 185	[3920] 445	700	950	[10630] 1200	[12820] 1450		
	106	ŀ	107	107	107	106	105	103		
	[32]	١	[1480] 165	[3740] 425	[5980] 675	[8200] 925	[10280] 1160			
	121	١	123	123	122	121	120			
	[36]	Ì	[1140] 130	[3490] 395	[5710] 645	[7930] 895	[9940] 1125			
	136	ı	138	138	138	137	135			
	[40]		[850] 95	[3240] 365	[5420] 610	[7640] 865	[9590] 1085			
	151	l	153	153	152	151	150			
	[50]			[2960] 325	[5160] 585	[7350] 830	[9310] 1050			
	189	ļ		191	190	189	188			
	[60]				[4660] 525	[7160] 810	[9070] 1025			
	227	l			230	229	226			

Abmessungen Serie 6000, Standardmotor

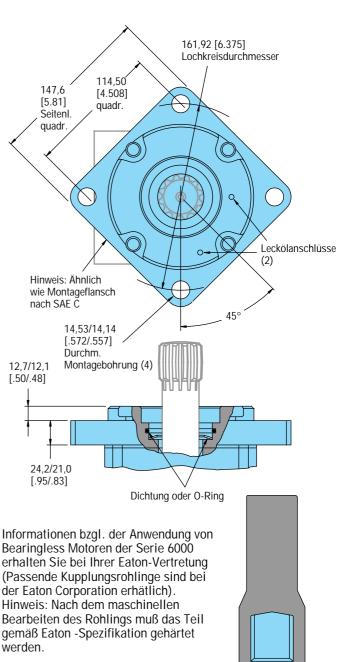

275,6 [10.85]

283,0 [11.14] 291,6 [11.48] 302,8 [11.92]



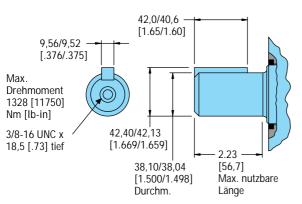
Abmessungen Serie 6000, Radmotor

Abmessungen Serie 6000, Bearingless Motor

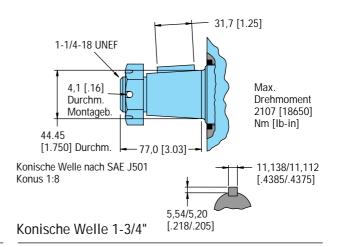


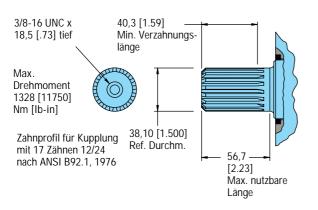
Serie 6000, Bearingless Motor mit Anschlüssen 1-5/16-12, O-Ring , Anschlüssen G 1 (BSP) oder Flanschanschlüssen 3/4"

mit Blick auf Abtriebswelle

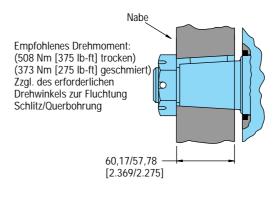

Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

Schluckvolumen	(==:) ===						
cm ³ /U	195	245	310	390	490	625	985
[in ³ /r]	[11.9]	[15.0]	[19.0]	[23.9]	[30.0]	[38.0]	[60.0]
Abm. X mm	105,4	111,0	118,3	127,2	138,1	152,9	192,8
[in]	[4.15]	[4.37]	[4.66]	[5.01]	[5.44]	[6.02]	[7.59]
Abm. Y mm	188,0	193,6	200,7	209,6	220,8	235,5	275,1
[in]	[7.40]	[7.62]	[7.90]	[8.25]	[8.69]	[9.27]	[10.83]

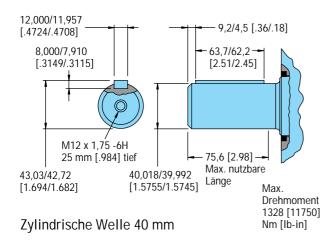


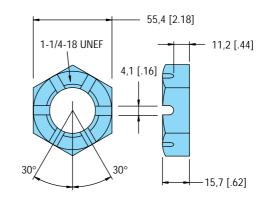


Abmessungen der Abtriebswellen Serie 6000



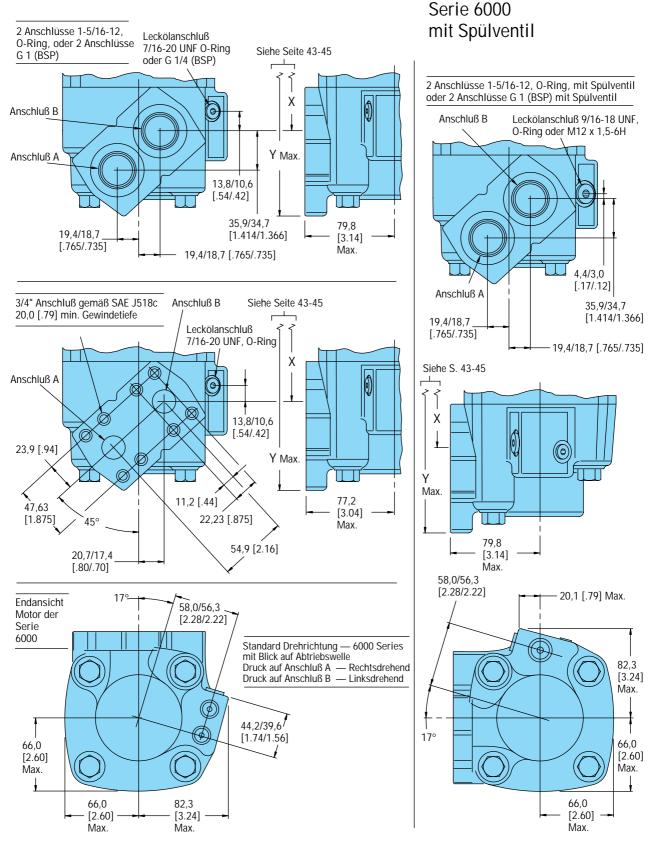
Zyl. Welle 1-1/2"





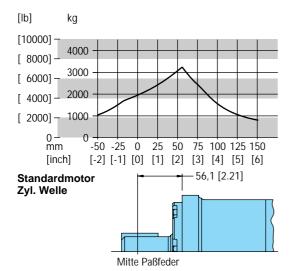
Keilwelle 1-1/2" 17 Zähne

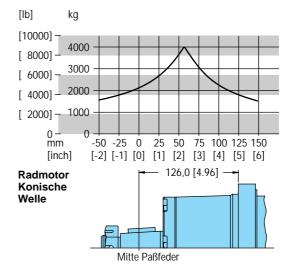
Konische Nabe

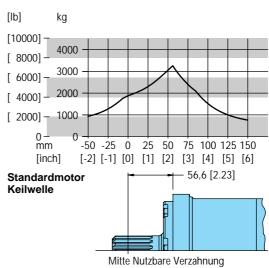


Geschlitzte Sechskantmutter

Abmessungen der Hydraulikanschlüsse Serie 6000


Wellenbelastung Serie 6000


Die Diagramme auf dieser Seite zeigen die zulässigen Radialkräfte auf die Abtriebswelle bezogen auf verschiedene Kraftangriffspunkte.


Das Diagramm basiert auf einer Lagerlebensdauer L 10 (2000 Stunden oder 12.000.000 Wellenumdrehungen bei 100 I/min) bei Nenndrehmoment. Zur Ermittlung der Radialkräfte bei anderen Drehzahlen als 100 I/min sind die im Lagerdiagramm angegebenen Belastungswerte mit den in nachstehender Tabelle aufgeführten Faktoren zu multiplizieren.

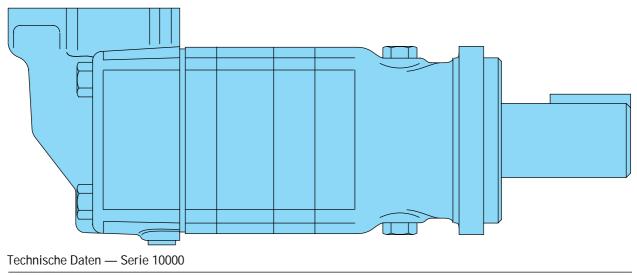
1/min	Multiplikationsfaktor	
50	1.23	
100	1.00	
200	.81	
300	.72	
400	.66	
500	.62	
600	.58	
700	.56	
800	.54	

Bei 3.000.000 Wellenumdrehungen oder 500 Stunden erhöhen sich diese Wellenbelastungen um 52%.

Produktnummern Serie 6000

Produktnummern — Serie 6000

Die 3-stellige Kennzahl 112-, 113-, oder 114- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel: 114-1047. Bestellungen ohne die 3-stellige Kennzahl können nicht bearbeitet werden.


			Schluck	volumen ci	m³/U [in³/r] und	Produktni	ummer	
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	195 [11.9]	245 [15.0]	310 [19.0]	390 [23.9]	490 [30.0]	625 [38.0]	985 [60.0]
	40 mm zyl.	G 1 (BSP)	112-1094	-1095	-1096	-1097	-1098	-1111	-1099
Flansch	1 1/2 zyl.	G 1 (BSP)	112	-1147	-	-	-	-	-
	1 1/2" Vielkeil 17 Z.	G 1 (BSP)	112-1088	-1089	-1090	-1091	-1092	-	-1093
Rad-	40 mm zyl.	G 1 (BSP)	113-1082	-1083	-1084	-1085	-1086	-1100	-1087
Rad- motor	1 5/8" konisch 1:8	G 1 (BSP)	113	-1103	-	-	-1098	-1099	-
Bearingless		G 1 (BSP)	114-1043	-1044	-1045	-1046	-1047	-	-1048
							$\overline{}$		

114-1047

Die nicht in dieser Tabelle aufgeführten Motoren der Serie 6000 sind mit Hilfe des Modellschlüssels auf Seite 74 zu spezifizieren.

Technische Daten Serie 10000

Schluckvolumen cm³/U [in³/r]		345 [21.0]	480 [29.3]	665 [40.6]	940 [57.4]
Max. Drehzahl (1/min)	Kontinuierlich	501	354	254	179
Schluckstrom	Intermittierend	784	552	396	279
Schluckstrom I/min [GPM]	Kontinuierlich	170 [45]	170 [45]	170 [45]	170 [45]
[GPIVI]	Intermittierend	265 [70]	265 [70]	265 [70]	265 [70]
Drehmoment Nm	Kontinuierlich	1040 [9220]	1475 [13050]	2085 [18450]	2700 [23910]
[lb-in]	Intermittierend	1390 [12310]	1965 [17410]	2610 [23080]	3440 [30460]
Druckdifferenz bar	Kontinuierlich	205 [3000]	205 [3000]	205 [3000]	190 [2750]
$[\Delta PSI]$	Intermittierend	275 [4000]	275 [4000]	260 [3750]	240 [3500]
	Spitze	275 [4000]	275 [4000]	275 [4000]	260 [3750]
Maximaler Gehäusedruck	ohne Leckölabführung * –	- 20 bar [300 PSI]			

Ein maximales Drehmoment bei gleichzeitiger hoher Drehzahl ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb siehe Leistungsdaten auf Seite 51-52.

* Bei einem kontinuierlichen Rücklaufdruck von über 20 bar [300 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen sind so zu montieren, daß das Motorgehäuse stets gefüllt ist.

Maximaler Eingangsdruck — 275 bar [4000 PSI]. Die vorgegebene Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden.

* Maximaler Rücklaufdruck — 275 Bar [4000 PSI]. Die vorgegebene Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden. Druckdifferenz — Differenz zwischen Eingags- und Rücklaufdruck.

Kontinuierlicher Betrieb — Der Motor kann mit diesen Daten im Dauerbetrieb gefahren werden.

 $Intermittierender \ Betrieb --- \ Zul. \ Betriebsbereich \ w\"{a}hrend \ 10\% \ jeder \ Minute.$

Spitzenbetrieb — Zul. Betriebsbereich während 1% jeder Minute.

Empfehlung für Druckflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl. Viskosität nicht unter 13 cSt bei Betriebstemperatur (siehe Seite 69).

Empfehlung für max. System
temperatur — 82° C [180° F].

Empfehlung für Ölfilterung — Entsprechend ISO-Reinheitskalsse 18/13.

Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30 % der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

Leistungsdaten Serie 10000

Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und

345 cm³/U [21.0 in³/r] Druckdifferenz bar [PSI] 480 cm³/U [29.3 in³/r] Druckdifferenz bar [PSI]

aus dem hellblauen Bereich getroffen wird.

					Diacko			0.1									D. Goma	111010112	. Du. [. O	-1		
		[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275				[250] 15	[500] 35	[1000] 70	[1500] 105	[2000] 140	[2500] 170	[3000] 205	[3500] 240	[4000] 275
	[1]	[600] 70 3	[1310] 150 1										[1]	85	[1540] 175 5	355	[4640] 525 2					
-	3,8 [2]	_		[3050] 345	[4600] 520	[6140] 695	[7680] 865						[2]	[1040] 120	-	[4320] 490	[6500] 735	[8690] 980	[10870] 1230			
-	7,5	21	19	15	11	8	4						7,5	15	13	11	8	5	2			
	[4] 15	[730] 80 43	[1500] 170 41	[3040] 345 37	[4590] 520 33	[6140] 695 30	[7680] 870 26	[9220] 1040 22	[10770] 1215 18	[12310] 1390 14			[4] 15	[1040] 120 31	[2130] 240 29	[4310] 485 27	[6490] 735 24	[8680] 980 21	[10860] 1225 18	[13050] 1475 16	[15230] 1720 13	[17410] 1965 10
SPM]	[8] 30	[720] 80 87	[1490] 170 86	[3030] 340 82	[4580] 515 78	[6120] 690 74	[7670] 865 70	[9210] 1040 66	[10750] 1215 62	[12300] 1390 58		PM]	[8] 30	[1020] 115 62	[2110] 240 61	[4290] 485 58	[6480] 730 55	[8660] 980 53	[10840] 1225 50	[13030] 1470 47	[15210] 1720 44	[17390] 1965 42
Schluckstrom I/min [GPM]	[12]		[1470] 165 130		[4560] 515 123		[7650] 865	[9190] 1040	[10740] 1215	[12280] 1385		Schluckstrom I/min [GPM]	[12]	[990] 110	[2080] 235	[4270] 480	[6450] 730	[8630] 975	[10820] 1220	[13000] 1470	[15180] 1715	[17370] 1965
≥ E	45	131	130	127	123	118	114	110	106	102		Ε	45	94	93	90 [4240]	87	84	81	78	75	73
ckstro	[16] 61	176	175	[3000] 340 172	167	163	[7630] 860 158	1035 154	[10720] 1210 149	1385 145		ckstro	[16] 61	110 125	[2060] 235 124	480 122	[6420] 725 119	116	[10790] 1220 113	1465 110	1710 1710 107	1960 104
Schlu	[20] 76	[660] 75 221	[1430] 160 220	[2970] 335 217	[4520] 510 212	[6060] 685 207	[7600] 860 202	[9150] 1035 198	[10690] 1210 193	[12230] 1380 189		Schlu	[20] 76	[930] 105 157	[2020] 230 156	[4200] 475 154	[6390] 720 150	[8570] 970 147	[10750] 1215 144	[12940] 1460 141	[15120] 1710 138	[17300] 1955 135
Ī	[24]			[2950] 335			[7580] 855		[10660] 1205	[12210] 1380			[24]	[890] 100		[4170] 470		[8530] 965				100
L	91	266	265	261	256	252	246	242	237	232			91	189	188	185	182	1 79	1210 175	1460 172	1705 1 69	
	[28]	[600] 70	[1370] 155	[2920] 330	[4460] 505	[6000] 680	[7550] 855	[9090] 1025	[10640] 1200	[12180] 1375			[28]	[850] 95	[1940] 220	[4130] 465	[6310] 715	[8490] 960	1205	[12860] 1455	[15040] 1700 200	
ŀ	1 06 [32]	310 [570]	309 [1340]	128901	301 [4430]	296 [5970]	291 [7520]	286	280 [10610]	275 [12150]			106 [32]	221 [810]	220	217	214 [6270]	210 [8/450]	207	203 [12820]	[15000]	
	121	[570] 65 356	[1340] 150 355	[2890] 325 351	[4430] 500 346	[5970] 675 340	[7520] 850 335	[9060] 1025 329	1200 324	1370 319			121	[810] 90 252	[1900] 215 251	[4080] 460 249	[6270] 710 245	[8450] 955 242	[10630] 1200 238	1450 235	1695 231	
	[36]	[540] 60	[1310]	[2850] 320	[4400]	[5940]	[7480]	[9030]	[10570]	[12120]			[36]	[760]	[1850]	[4040]	[6220] 705	[8400]	[10590]	[12770] 1445		
	136	400	150 399	320 396	495 390	670 384	845 379	1020 373	1195 368	1370 362			136	85 282	210 281	455 280	277	950 273	1195 270	266		
	[40]	[500] 55	[1270] 145	[2820] 320	[4360] 495	[5910] 670	[7450] 840	[8990] 1015	[10540] 1190				[40]	[710] 80	[1800] 205	[3990] 450	[6170] 695	[8350] 945	[10540] 1190	[12720] 1440		
	151	445	444	441	435	429	423	417	412				151	318	316	312	308	305	301	297		
	[45]	[460]	[1220] 140	[2760] 310	[4300] 485	[5840]	[7380] 835 480	[8910] 1005	[10450] 1180				[45]	[647]	[1740]	[3920] 445 351	[6110]	[8290] 935	[10470]	[12660] 1430		
	170	50 501	500	498	492	486			467				170	75 354	195 353	351	690 348	344	1185 340	336		
	[60] 227		[1080] 130 668	[2620] 295 665	[4160] 470 658	[5710] 645 651	[7250] 820 644	[8800] 995 637					[60] 227	[430] 50 474	[1520] 170 473	[3710] 420 471	[5890] 665 467	[8070] 910 462	[10260] 1160 458	[12440] 1405 454		
ŀ	[70]		[960]			[5590]	[7140]	[8680]					[70]	4/4	[1360]	[3540]	[5730]	[7910]	[10100]			
	265		110 784	[2510] 285 777	460 769	630 761	805 754	980 746					265		155 552	400 550	645 546	895 541	1140 536	1385 532		
	_		/[/	_																	
	[]	2510] 285	Drehm	noment Nm	[lb-in]					tinuie												
		777	Drehz	ahl 1/m	nin				Inte	rmittie	erend											

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt. Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

Leistungsdaten Serie 10000

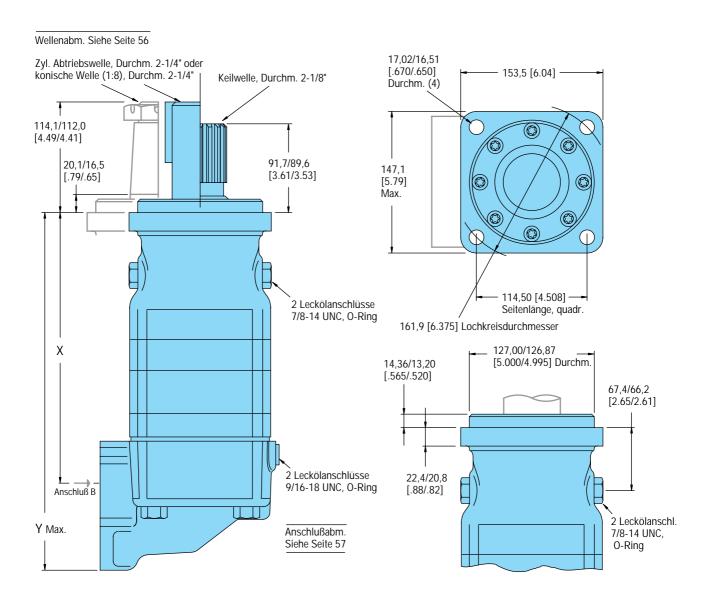
665 cm³/U [40.6 in³/r] Druckdifferenz bar [PSI]

		[250] 15	[500] 35	[750] 50	[1000] 70	[1250] 85	[1500] 105	[1750] 120	[2000] 140	[2250] 155	[2500] 170	[2750] 190	[3000] 205	[3250] 225	[3500] 240	[3750] 260
	[1]	[1470] 165	340	[4550] 515	690	860										
	3,8 [2]	[1480] 165	[3020] 340	[4560] 515	[6110] 690	7 [7650] 865	[9200] 1040	[10740] 1215	[12280] 1385	[13830] 1565	[15370] 1735	[16910] 1910				
- [7,5	10	9	8	7	7	6	5	4	3	2	1				
	[4]	165	340	515	690	865	1040	1210	1385	1560	1735	1910	2085	2260	[21540] 2435	2610
ŀ	15	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8
GPM]	[8] 30	[1440] 165 44	[2980] 335 43	[4530] 510 42	[6070] 685 41	[7610] 860 40	1035 39	1210 38	[12250] 1385 37	1560 36	[15330] 1730 35	1905 34	[18420] 2080 33	2255 32	[21510] 2430 32	[23050] 2605 31
]/min	[12] 45	[1400] 160 67	[2950] 335 66	[4490] 505 65	[6040] 680 64	[7580] 855 63	[9120] 1030 62	[10670] 1205 61	[12210] 1380 60	[13750] 1555 59	[15300] 1730 58	[16840] 1905 57	[18380] 2075 56	[19930] 2255 55	[21470] 2425 54	[23020] 2600 53
Schluckstrom I/min [GPM]	[16] 61	[1360] 155 89	[2910] 330 88	[4450] 505 87	[5990] 675 86	[7540] 850 85	[9080] 1025 84	[10620] 1200 83	[12170] 1375 82	[13710] 1550 81	[15260] 1725 80	[16800] 1900 79	[18340] 2070 78	[19890] 2245 77	[21430] 2420 76	
Schluc	[20] 76	[1310] 150 112	[2860] 375 111	[4400] 495 110	[5940] 670 109	[7490] 845 108	[9030] 1020 107	[10580] 1195 106	[12120] 1370 104	[13660] 1545 103	[15210] 1720 102	[16750] 1890 101	[18300] 2070 100	[19840] 2240 99		
ŀ	[24]								_	[13610]		[16700]		99		
	91	140 135	315 134	490 132	665 131	840 130	1015 129	1190 128	1365 127	1540 126	1710 124	1885 123	2060 122			
	[28]	135	310	485	[5840] 660	[7380] 835	1010	1185	[12010] 1355	1530	[15100] 1705	1880				
- 1	106	157	156	155	154	153	151	150	149	148	147	146				
	[32]	[1140] 130 180	[2690] 305 179	[4230] 480 177	[5770] 650 176	[7320] 825 175	1000 174	1175 173	1350 172	[13490] 1525 170	1700 1 69	1875 168				
Ī	[36]				[5710]					[13430]		[16510]				
	136	120 202	295 201	470 200	645 199	820 198	995 196	1170 195	1340 194	1515 193	1690 191	1865 190				
	[40]	[1010]	[2550]	[4100]	[5640]	[7180]	[8730]	[10270]	[11810]	[13360]	[14900]	[16440]				
	151	115 225	290 224	465 222	635 221	810 220	985 219	1160 217	1335 216	1510 215	1685 214	1855 212				
	[45]	[920]		[4000]	[5550]	[7090]			[11720]	[13260]	[14810]					
	170	105 254	280 252	450 251	625 249	800 248	975 247	1150 245	1325 244	1500 243	1675 242					
	[60]	[610]	[2150]	[3700]	[5240]	[6780]	[8330]	[9870]	[11420]	[12960]						
	227	70 338	245 336	420 335	590 334	765 332	940 331	1115 329	1290 328	1465 327						
	[70]	[380] 45	[1930] 220	[3470] 390	[5010] 565	[6560] 740	[8100] 915	[9640] 1090	[11190] 1265							
Į	265	396	393	/391	390	388	387	385	384							

[3470] Drehmoment [lb-in] Kontinuierlich Snm Intermittierend

940 cm³/U [57.4 in³/r] Druckdifferenz bar [PSI]

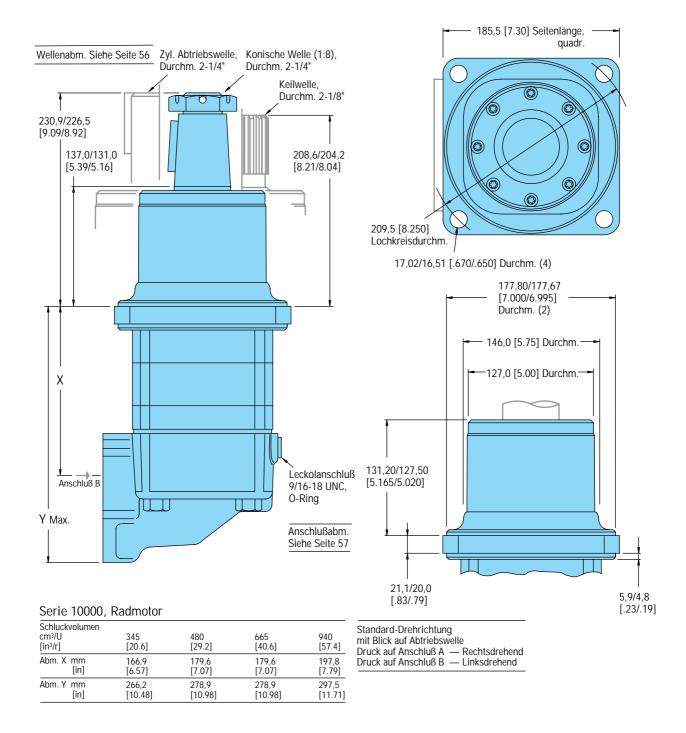
		13	33	30	70	00	103	120	140	100	170	190	200	223	
	[1] 3,8	[2080] 235 3	[4260] 480 2	[6440] 730 1											
	[2] 7,5	[2090] 235 7	[4270] 480 6	[6450] 730 5		[10820] 1220 4			[17370] 1965 1						
	[4] 15	[2080] 235 15	[4260] 480 14	[6440] 730 13	[8620] 975 13	[10810] 1220 12	[12990] 1470 11	[15170] 1715 10	[17360] 1960 9	[19540] 2210 8	2455	[23910] 2700 7	[26090] 2950 6	[28270] 3195 5	
[GPM]	[8] 30	[2040] 230 31	[4220] 475 30	[6400] 725 29	[8590] 970 28	[10770] 1215 28	[12950] 1465 27	[15140] 1710 26	[17320] 1955 25	[19500] 2200 24		[23870] 2695 22			
Schluckstrom I/min [GPM]	[12] 45	[1990] 225 47	[4170] 470 46	[6350] 715 45	[8540] 965 44	[10720] 1210 43	[12900] 1460 43	[15090] 1705 42	[17270] 1950 41	[19450] 2200 40	[21640] 2445 39				
ckstron	[16] 61	220 63	465 62	710 61	960 60	1205 59	1450 58	[15030] 1700 58	1945 57	2190 56					
Schlu	[20] 76	[1860] 210 79	455 78	705 77	950 76	1195 75	1445 74	[14960] 1690 73	[17140] 1935 72	[19320] 2185 72					
	[24] 91	200 95	450 94	[6150] 695 93	940 92	[10520] 1190 91	1435 90	1680 89	[17070] 1930 88						
	[28] 106	190 111	440 110	685 109	930 1 08	1180 107	1425 106	[14800] 1675 105	[16990] 1920 104						
	[32]	185 127	430 126	675 125	920 124	[10350] 1170 123	1415 122	1665 121							
	[36] 136	[1520] 170 143	[3710] 420 142	[5890] 665 141	[8070] 910 140	[10260] 1160 139	[12440] 1405 138	1650							
	[40] 151	[1420] 160 159	[3610] 410 158	[5790] 655 157	[7970] 900 156	[10160] 1150 155	[12340] 1395 154	1640							
	[45] 170	[1290] 145 179	[3480] 395 178	[5660] 640 177	[7840] 885 176	[10020] 1130 174	[12210] 1380 174	[14400] 1625 173							
	[60] 227	[860] 95 239	345 238	[5230] 590 236	835 235	[9600] 1085 234	[11780] 1330 233								
	[70] 265	[540] 60 279	[2720] 305 278	[4910] 555 276	[7090] 800 275	[9270] 1045 274	[11460] 1295 273								


Die Motoren laufen in allen für sie vorgesehenen Drehzahl- und Drehmomentbereichen mit einem hohen Wirkungsgrad. Zum Erreichen einer maximalen Lebensdauer ist es jedoch wichtig, daß die Auswahl für Drehmoment und Drehzahl aus dem hellblauen Bereich getroffen wird.

Die Leistungen gelten für eine Öl-Viskosität von 25 cSt.

Die tatsächlichen Daten können von Motor zu Motor geringfügig variieren.

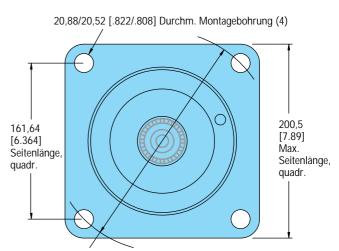
Abmessungen Serie 10000, Standardmotor


Serie 10000, Standardmotor

Schluckvolumen cm³/U [in³/r]	345 [20.6]	480 [29.2]	665 [40.6]	940 [57.4]
Abm. X mm	282,4	295,1	295,1	313,7
[in]	[11.12]	[11.62]	[11.62]	[12.35]
Abm. Y mm	380,8	393,7	393,7	412,3
[in]	[14.99]	[15.50]	[15.50]	[16.23]

Standard-Drehrichtung mit Blick auf Abtriebswelle Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

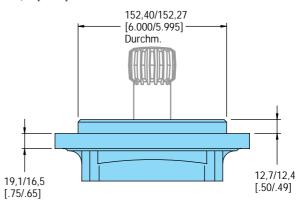
Abmessungen Serie 10000, Radmotor


Standard-Drehrichtung

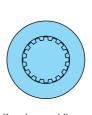
mit Blick auf Abtriebswelle

Druck auf Anschluß A — Rechtsdrehend Druck auf Anschluß B — Linksdrehend

Abmessungen Serie 10000, Bearingless Motor



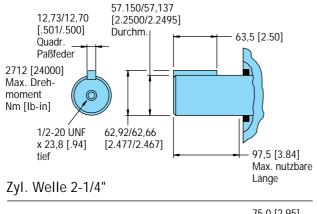
228,60 [9.000] Lochkreisdurchmesser

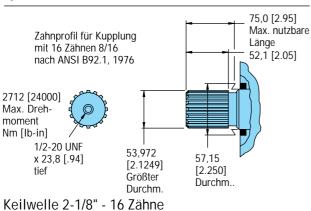

X
Anschluß B
Anschluß B

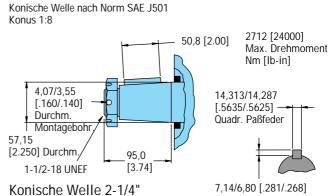
Y Max.

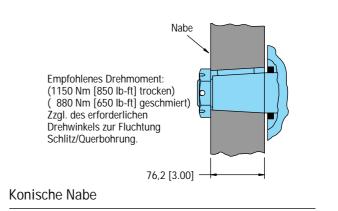
Anschlußabm. Siehe S. 57

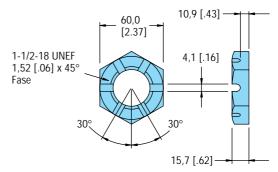
Informationen bzgl. der Anwendung von Bearingless Motoren der Serie 10000 erhalten Sie bei Ihrer Eaton-Vertretung (Passende Kupplungsrohlinge sind bei 9/16-18 UNC, O-Ring der Eaton Corporation erhältlich). Hinweis: Nach dem maschinellen Bearbeiten des Rohlings muß das Teil gemäß Eaton-Spezifikation gehärtet werden.

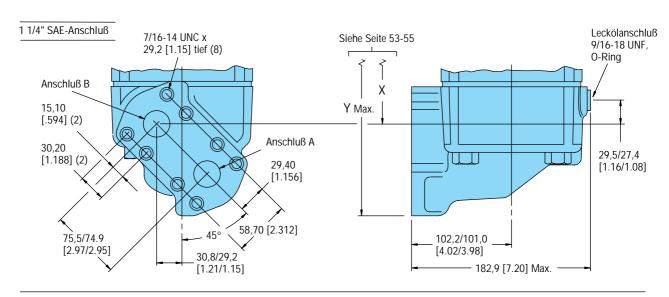

Passender Kupplungsrohling Eaton-Teilenummer 12855-002

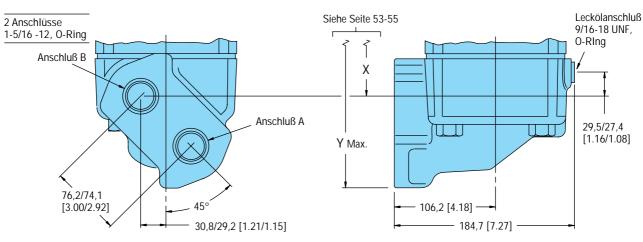

Serie 10000, Bearingless Motor

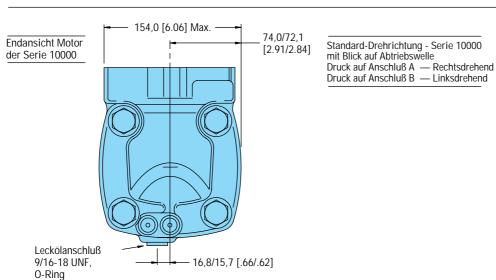

•	J			
Schluckvolumen cm³/U [in³/r]	345 [20.6]	480 [29.2]	665 [40.6]	940 [57.4]
Abm. X mm [in]	158,0 [6.22]	170,7 [6.72]	170,7 [6.72]	188,9 [7.44]
Abm. Y mm [in]	256,1 [10.10]	269,3 [10.60]	269,3 [10.60]	287,6 [11.32]



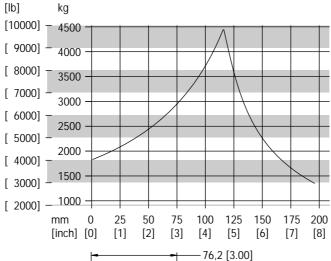

Abmessungen der Abtriebswellen Serie 10000

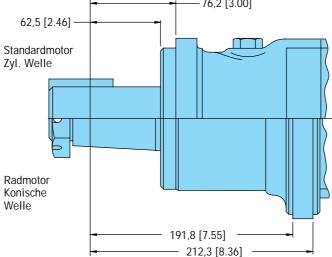





Geschlitzte Sechskantmutter

Abmessungen der Hydraulikanschlüsse Serie 10000


Wellenbelastung Serie 10000


Die Diagramme auf dieser Seite zeigen die zulässigen Radialkräfte auf die Abtriebswelle(n) bezogen auf verschiedene Kraftangriffspunkte.

Das Diagramm basiert auf einer Lagerlebensdauer B 10 (2000 Stunden oder 12.000.000 Wellenumdrehungen bei 100 l/min) bei Nennabtriebsdrehmoment. Zur Ermittlung der Radialkräfte bei anderen Drehzahlen als 100 1/min sind die im Lagerdiagramm angegebenen Belastungswerte mit den in nachstehender Tabelle aufgeführten Faktoren zu multiplizieren.

1/min	Multiplikationsfaktor	
 50	1.23	
100	1.00	
200	.81	
300	.72	
400	.66	
500	.62	
600	.58	
700	.56	
800	.54	

Bei 3.000.000 Wellenumdrehungen oder 500 Stunden erhöhen sich diese Wellenbelastungen um 52%.

Produktnummern Serie 10000

Produktnummern — Motoren der Serie 10000

Die 3-stellige Kennzahl 119-, 120-, oder 121- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel: 121-1014. Bestellungen ohne die 3-stellige Kennzahl können nicht bearbeitet werden.

			Schluck	volumen c	m³/U [in³/r] und Produktnummer
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	345 [21.0]	480 [29.3]	665 [40.6]	940 [57.4]
	2-1/4" zyl.	1-5/16 O-Ring	119-1028	-1029	-1030	-1031
	2-1/4 Zyl.	1-1/4 SAE-Flansch	119-1040	-1041	-1042	-1043
Standard	2-1/8" Keilwelle	1-5/16 O-Ring	119-1032	-1033	-1034	-1035
4-Loch Flansch	16 Zähne	1-1/4 SAE-Flansch	119-1044	-1045	-1046	-1047
	2-1/4" konisch	1-5/16 O-Ring	119-1036	-1037	-1038	-1039
	2 I/ I ROMSCII	1-1/4 SAE-Flansch	119-1048	-1049	-1050	-1051
	2-1/4" zyl.	1-5/16 O-Ring	120-1005	-1006	-1007	-1008
		1-1/4 SAE-Flansch	120-1017	-1018	-1019	-1020
Rad-	2-1/8 Keilwelle	1-5/16 O-Ring	120-1009	-1010	-1011	-1012
motor	16 Zähne	1-1/4 SAE-Flansch	120-1021	-1022	-1023	-1024
	2-1/4" konisch	1-5/16 O-Ring	120-1013	-1014	-1015	-1016
		1-1/4 SAE-Flansch	120-1025	-1026	-1027	-1028
Bearingless	ı	1-5/16 O-Ring	121-1007	-1008	-1009	-1010
	•	1-1/4 SAE-Flansch	121-1011	-1012	-1013	-1014

Nicht in dieser Tabelle aufgeführte Motoren der Serie 10.000 sind mit Hilfe des Modellschlüssels auf Seite 75 zu spezifizieren.

121-1014

Zweigang-Motoren — Serie 2000 und 10000

Die Eaton-Motoren der Serie 2000 und 10000 sind verfügbar mit einem im Verhältnis 1:2 umschaltbaren Schluckvolumen. Die Umschaltung zwischen maximaler (LSHT-Modus) und minimaler Verdrängung (HSLT-Modus) erfolgt mittels eines integrierten druckbetätigten 3/2 - Wegeventils. Der minimale Steuerdruck beträgt 7 bar plus Gehäusedruck. Bei halber Verdrängung werden ca. 50% des Drehmomentes sowie die doppelte Drehzahl bezogen auf die maximale Verdrängung erzielt.

Ein externes 3/2 - Wegeventil ist notwendig, um den Steuerdruckanschluß zur Umschaltung der Verdrängung mit dem erforderlichen Steuerdruck zu beaufschlagen.

Für Anwendungen im geschlossenen Kreislauf sind Zweigang-Motoren mit integriertem Spülventil lieferbar.

Solange der Steuerdruckanschluß drucklos geschaltet ist, nimmt der Motor die maximale Verdrängung ein. Mit einer Steuerdruckdifferenz von 7 bar wird das interne Schaltventil gegen die Rückstellfeder verschoben und der Motor nimmt die minimale Verdrängung an. Das im Federraum befindliche Öl wird intern abgeführt. Die Steuerdruckdifferenz zwischen Steuerund Gehäusedruck muß ständig aufrechterhalten werden, um den Motor in HSLT-Modus mit minimaler Verdrängung zu halten

Wird der Steuerdruckanschluß mittels des externen 3/2 - Wegeventils entlastet, so wird das interne Schaltventil mittels der Rückstellfeder in den LSHT - Modus geschaltet und der Motor nimmt die maximale Verdrängung an.

Der Steuerdruck kann von beliebigen Quellen stammen, die während des Betriebs mit minimaler Verdrängung eine beständige Steuerdruckdifferenz sicherstellen. Der zulässige Steuerdruckbereich erstreckt sich von minimal 7 bar delta bis zum maximalem Betriebsdruck des Motors.

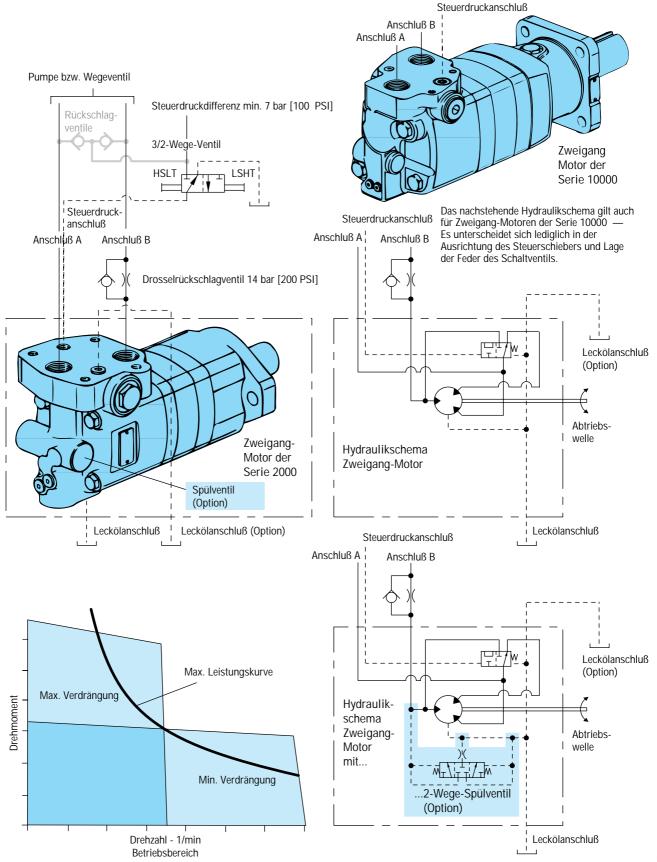
Im LSHT-Modus mit maximaler Verdrängung ist das abgegebene Drehmoment des Motors wie auch bei Standardmotoren in beiden Arbeitsrichtungen gleich groß.

Im HSLT - Modus mit minimaler Verdrängung ist jedoch die bevorzugte Drehrichtung vorgegeben durch Druckmittelzufuhr am Anschluß B. Um bei Druckmittelzufuhr am Anschluß A eventuelle Kavitation aufgrund der unsymetrischen Geometrie des Axialverteilerventils im HSLT - Modus zu vermeiden, ist der Anschluß B mit 14 bar vorzuspannen (siehe Seite 61).

Bei Betrieb in Bereichen wo die erforderliche Vorspannung bedenklich ist, kann auf Zweigang-Motoren mit umgekehrtem Drehrichtungsverhalten bezogen auf die Anschlüsse A und B zurückgegriffen werden. Die Vorgabe der Vorspannung am Anschluß B ändert sich hiermit jedoch nicht. Bei Betrieb in geschlossenen Kreisläufen wird die Vorspannung in der Regel durch den Speisedruck aufgebracht werden, zusätzliche Vorspannung ist dann nicht erforderlich.

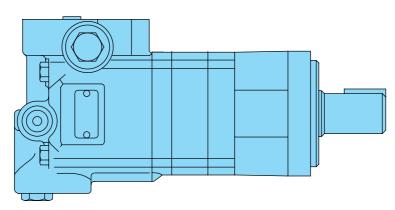
Hinweis: In geschlossenen Kreisläufen ist sicherzustellen, daß die Speisepumpe unter allen Betriebsbedingungn (Bremsen, generatorischer Betrieb etc.) den am Anschluß B erforderlichen Vorspanndruck aufrechterhält.

Wichtig: Wegen möglicher Probleme bei der Aufrechterhaltung des Speisedrucks am Anschluß B während dynamischer Bremsvorgänge empfiehlt Eaton, keine Zweigang-Motoren zu verwenden, wenn mit generatorischem Betrieb zu rechnen ist.


Leistungsdaten Zweigang-Motoren — Serie 2000 und 10000

Im HSLT - Modus mit halber Verdrängung werden ca. 50% des Drehmomentes sowie doppelte Drehzahl bei gegebenem Volumenstrom im Vergleich zu Standard Serie 2000 und 10000 Motoren Verdrängung erzielt.

Im LSHT - Modus mit maximaler Verdrängung sind Drehmoment und Drehzahl identisch mit denen der Standard Motoren Serie 2000 und 10000 (siehe Leistungsdaten auf Seiten 12 - 16 für die Serie 2000 und auf den Seiten 51 und 52 für die Serie 10000). Technische Daten, Abmessungen und Produktnummern der Zweigang-Motoren siehe Seiten 62 bis 68.



Zweigang-Motoren Serie 2000 und Serie 10000

Technische Daten Zweigang-Motoren Serie 2000

Technische Daten — Serie 2000, Zweigang

Schluckvolumen cm³/U [in³/r]		HSLT	40 [2.45]	50 [3.1]	65 [4.0]	80 [4.8]	95 [5.95]	120 [7.45]	155 [9.35]	195 [12.0]	245 [15.0]
		LSHT	80 [4.9]	100 [6.2]	130 [8.0]	160 [9.6]	195 [11.9]	245 [14.9]	305 [18.7]	395 [24.0]	490 [29.8]
Max. Drehzahl (1/min)		HSLT	1000	1000	990	860	700	560	450	350	115
bei kont. Schluckstrom		LSHT	500	500	495	430	350	280	225	175	230
Schluckstrom I/min		HSLT	45 [12]	55 [15]	70 [19]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]
[GPM]		LSHT	45 [12]	55 [15]	70 [19]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]	75 [20]
Drehmoment Nm [lb-in]		Kontinuierl.	100 [880]	125 [1115]	165 [1450]	195 [1725]	240 [2150]	300 [2675]	380 [3350]	365 [3225]	486 [4300]
Wellen-Durchmesser 32 mm bzw. 1-1/4"	~~	HSLT —— Intermittier.	145 [1300]	185 [1660]	240 [2150]	240 [2150]	300 [2650]	375 [3330]	440 [3900]	445 [3940]	448 [3970]
Drehmoment Nm [lb-in]	 کر	Kontinuierl.	235 [2065]	295 [2630]	385 [3420]	455 [4040]	540 [4780]	660 [5850]	760 [6750]	770 [6840]	845 [7470]
Wellen-Durchmesser 32 mm bzw. 1-1/4"		LSHT — Intermittier.	345 [3040]	445 [3950]	560 [4970]	570 [5040]	665 [5890]	820 [7250]	885 [7820]	925 [8170]	930 [8225]
Druckdifferenz	${\updownarrow}$	Kontinuierl.	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	205 [3000]	155 [2250]	120 [1750]
bar [PSI]		Intermittier.	310 [4500]	310 [4500]	310 [4500]	260 [3750]	260 [3750]	260 [3750]	240 [3500]	190 [2750]	140 [2000]

Maximaler Gehäusedruck ohne Leckölabführung * — 140 bar [2000 PSI]

HSLT = Min. Verdrängung

LSHT = Max. Verdrängung

Ein maximales Drehmoment bei gleichzeitigem hohem Schluckstrom ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb siehe Leistungsdaten auf Seite12-16 (Betriebsbereich LSHT, Niedrige Drehzahl/Hohes Drehmoment).

- Maximum Drehmoment bei 1" Welle 395 Nm [3500 lb-in] kontinuierlich und 485 Nm [4300 lb-in] intermittierend.
 - * Bei einem kontinuierlichen Rücklaufdruck von über 140 bar [2000 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen ist so zu montieren, daß das Motorgehäuse stets gefüllt ist.

Maximaler Eingangsdruck — 310 bar [4500 PSI]. Die Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden.

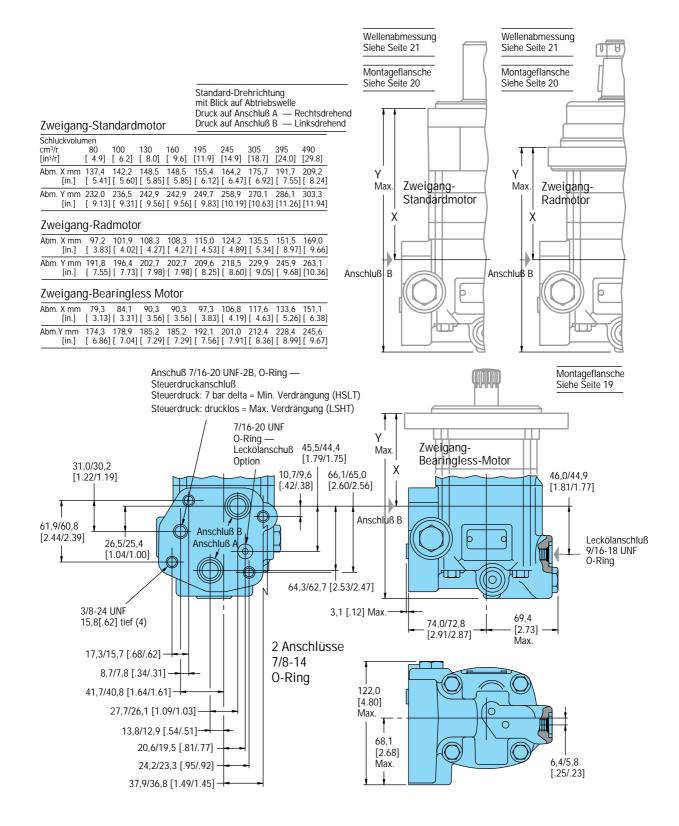
* Maximaler Rücklaufdruck — 310 bar [4500 PSI]. Die Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden.

Druckdifferenz — Differenz zwischen Eingangs- und Rücklaufdruck.

Kontinuierlicher Betrieb — Der Motor kann mit diesen Daten im Dauerbetrieb gefahren werden.

Intermittierender Betrieb — Zul. Betriebsbereich während 10% jeder Minute.

Empfehlung für Druckflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl. Viskosität (bei Betriebstemperatur) mindestens 13 cSt (siehe Seite 69).


Empfehlung für max. Systemtemperatur — 82° C [180° F]

 ${\it Empfehlung f\"ur\ \"Olfilterung --- Entsprechend\ ISO-Reinheitsklasse\ 18/13}$

Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30% der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

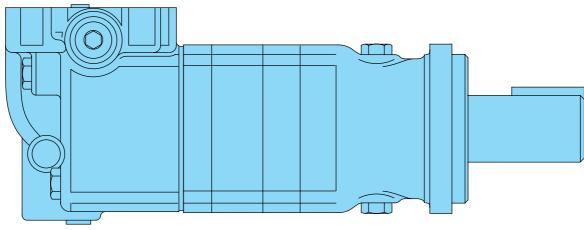
Abmessungen Zweigang-Ausführung der Serie 2000 Standard-, Rad- und Bearingless-Motoren

Produktnummern Zweigang-Motoren der Serie 2000

Produktnummern — Serie 2000 — Zweigang*

Die 3-stellige Kennzahl 104-, 105- oder 106- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel 106-2007. Bestellungen ohne die 3-stellige Kennzahl können nicht bearbeitet werden.

106-2007


			Schluck	volumen cr	m ³ /U [in ³ /r]	und	Produktr	nummern			
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	80 [4.9]	100 [6.2]	130 [8.0]	160 [9.6]	195 [11.9]	245 [14.9]	305 [18.7]	395 [24.0]	490 [29.8]
2-Loch Flansch SAE A	1 1/4" zyl.	7/8-14 O-RIng	104-2009	-2010	-2011	-2012	-2013	-2014	-2015	-2016	-
	1" SAE 6B	7/8-14 O-Ring	104-2033	-2034	-2035	-2036	-2037	-	-	-	-
4-Loch Flansch Standard	32mm zyl.	G 1/2 (BSP)	104-2234	-2235	-2236	-2237	-2238	-2239	-2240	-2241	-2242
Radmotor	32 mm zyl.	7/8-14 O-Ring	105-	-	-	-	-	-	-	-	-
4-Loch Standard	1-1/4 " Konisch	7/8-14 O-Ring	105-2001	-2002	-2003	-2004	-2005	-2006	-2007	-2008	-
	1 1/4" Vielkeil 14 Z.	7/8-14 O-Ring	105-2009	-2010	-2011	-2012	-2013	-2014	-2015	-2016	
Bearingless		7/8-14 O-RIng	106-2001	-2002	-2003	-2004	-2005	-2006	-2007	-2008	_

^{*} Drehrichtung rechts

Die nicht in dieser Tabelle aufgeführten Zweigang-Motoren der Serie 2000 können mit Hilfe Ihrer zuständigen Eaton-Vertretung spezifiziert werden.

Technische Daten Zweigang Motoren Serie 10000

Technische Daten — Serie 10000, Zweigang

HSLT		169 [10.3]	239 [14.6]	332,7 [20.3]	470 [28.7]
LSHT		345 [21.0]	480 [29.3]	665 [40.6]	940 [57.4]
HSLT		750	630	500	400
LSHT		375	315	250	200
HSLT		130 [35]	170 [45]	170 [45]	170 [45]
LSHT		130 [35]	170 [45]	170 [45]	170 [45]
UCL T	Kontinuierlich	440 [3900]	630 [5600]	905 [8000]	1175 [10400]
поці	Intermittierend	585 [5200]	845 [7500]	1130 [10000]	1470 [13000]
	Kontinuierlich	1015 [9000]	1470 [13000]	2090 [18500]	2710 [24000]
LSHI	Intermittierend	1355 [12000]	1965 [17400]	2600 [23000]	3445 [30500]
	Kontinuierlich	205 [3000]	205 [3000]	205 [3000]	190 [2750]
	Intermittierend	275 [4000]	275 [4000]	260 [3750]	240 [3500]
	LSHT HSLT LSHT	LSHT HSLT LSHT HSLT LSHT HSLT LSHT Kontinuierlich Intermittierend Kontinuierlich Intermittierend Kontinuierlich Intermittierend Kontinuierlich	Table Tabl	Table Tabl	Table Tabl

Maximaler Gehäusedruck ohne Leckölabführung * — 20 bar [300 PSI]

HSLT = Min. Verdrängung LSHT = Max. Verdrängung

Ein maximales Drehmoment bei gleichzeitigem hohen Schluckstrom ist nicht zu empfehlen. Zulässige Kombinationen von Druck und Schluckstrom bei kontinuierlichem und intermittierendem Betrieb siehe Leistungsdaten auf Seite 51-52 (LSHT).

* Bei einem kontinuierlichen Rücklaufdruck von über 20 bar [300 PSI] ist eine Leckölabführung zu verwenden. Die Leckölleitungen ist so zu montieren, daß das Motorgehäuse stets gefüllt ist.

Maximaler Eingangsdruck — 275 bar [4000 PSI]. Die Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden.

* Maximaler Rücklaufdruck — 275 bar [4000 PSI]. Die Druckdifferenz (siehe Tabelle oben) darf nicht überschritten werden. Druckdifferenz — Differenz zwischen Eingangs- und Rücklaufdruck.

 $Kontinuier licher \ Betrieb \ -- \ Der \ Motor \ kann \ mit \ diesen \ Daten \ im \ Dauerbetrieb \ gefahren \ werden.$

Intermittierender Betrieb — Zul. Betriebsbereich während 10% jeder Minute

Empfehlung für Druckflüssigkeiten — Hochwertiges, verschleißfestes Hydrauliköl. Viskosität (bei Betriebstemperatur) mindestens 13 cSt (siehe Seite 69).

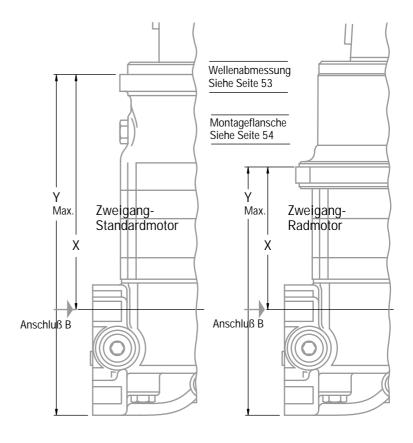
Empfehlung für max. Systemtemperatur — 82° C [180° F].

Empfehlung für Ölfilterung — Entsprechend ISO-Reinheitsklasse 18/13.

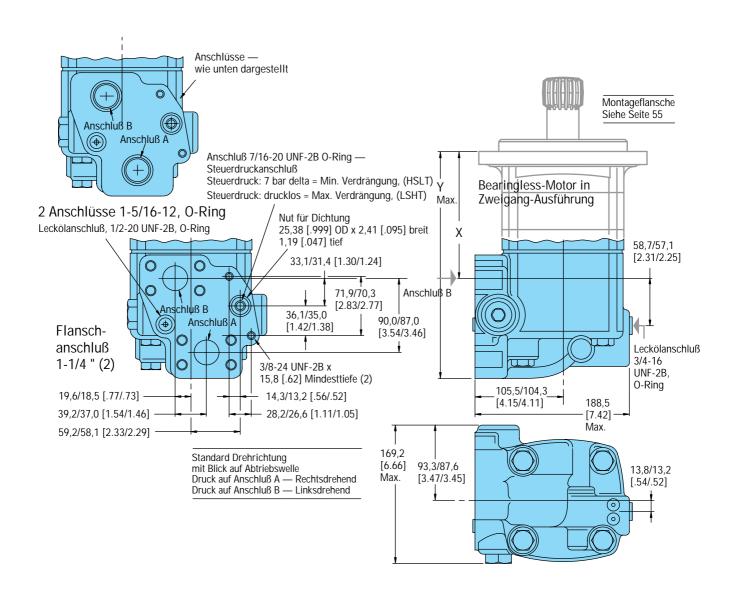
Zur Gewährleistung einer maximalen Lebensdauer sollte der Motor vor Einsatz bei Vollast ca. 1 Stunde mit 30% der Nennleistung gefahren werden. Es ist sicherzustellen, daß der Motor vor jeglicher Belastung mit Druckflüssigkeit gefüllt wird.

Abmessungen Zweigang-Ausführung der Serie 10000 Standard-, Rad- und Bearingless-Motoren

Zweigang-Standardmotor


Schluckvolume	n			
cm ³ /U	345	480	665	940
[in³/r]	[20.6]	[29.2]	[40.6]	[57.4]
Abm. X mm [in]	281,8 [11.09]	295,0 [11.61]	295,0 [11.61]	313,6 [12.34]
Abm. Y mm [in]	392,7 [15.46]	405,4 [15.96]	405,4 [15.96]	423,9 [16.69]

Zweigang-Radmotor


Abm. Y mm	278,1	290,8	290,8	309,1
	[10.95]	[11.45]	[11.45]	[12.17]
Abm. X mm [in]	166,4	179,6	179,6	197,8
	[6.55]	[7.07]	[7.07]	[7.79]

Zweigang-Bearingless-Motor

Abm. X mm	157,4	170,7	170,7	189,2
[in]	[6.20]	[6.72]	[6.72]	[7.45]
Abm. Y mm	265,5	281,2	281,2	299,5
[in]	[10.57]	[11.07]	[11.07]	[11.79]

Produktnummern Zweigang-Motoren der Serie 10000

Produktnummern — Serie 10000 - Zweigang

Die 3-stellige Kennzahl 119-, 120- oder 121- ist der 4-stelligen Zahl aus der Tabelle voranzustellen — Beispiel 121-2002. Bestellung ohne die 3-stellige Kennzahl können nicht bearbeitet werden.

	·	·	Schluck	cvolumen ci	m³/U [in³/r]	und	Produktnummer
Anschluß- variante	Abtriebs- welle	Hydraulik- anschluß	345 [21.0]	480 [29.3]	665 [40.6]	940 [57.4]	
Standard	2-1/4" zyl.	1-5/16" O-Ring	119-2013	-2014	-2015	-2016	
		1-1/4" SAE	119-2001	-2002	-2003	-2004	
	2-1/4" konisch	1-5/16" O-Ring	119-2017	-2018	-2019	-2020	
		1-1/4" SAE	119-2005	-2006	-2007	-2008	
	2-1/8" Vielkeilwelle 16 Zähne	1-5/16" O-Ring	119-2021	-2022	-2023	-2024	
		1-1/4" SAE	119-2009	-2010	-2011	-2012	
	2-1/4" zyl.	1-1/4" SAE	120-2005	-2006	-2007	-2008	
Rad- 2-1/4 motor	2-1/4" konisch	1-5/16" O-ring	120-2013	-2014	-2015	-2016	
		1-1/4" Fl.anschl.	120-2001	-2002	-2003	-2004	
	2-1/8" Vielkeilwelle 16 Zähne	1-1/4" SAE	120-2009	-2010	-2011	-2012	
Dooringlood		1-5/16" O-Ring	121-2005	-2006	-2007	-2008	
Bearingless	•	1-1/4" SAE	121-2001	-2002	-2003	-2004	
				12	21-2002)	

Die nicht in dieser Tabelle aufgeführten Zweigang-Motoren der Serie 10000 können mit Hilfe Ihrer zuständigen Eaton-Vertretung spezifiziert werden.

Empfehlungen für Druckflüssigkeiten Char-Lynn-Motoren mit Axialverteilerventil

Einführung

Das Leistungsverhalten und die Lebensdauererwartung von Eaton-Hydraulik-Komponenten hängt weitgehend von der Verwendung der Druckflüssigkeit ab. Dieser Abschnitt soll dem Leser das Wissen vermitteln, das notwendig ist zur Auswahl der geeigneten Druckflüssigkeiten in Systemen mit Eaton-Hydraulik-Komponenten. Eines der wichtigsten Auswahlkriterien für Druckflüssigkeiten in Hydraulik-Systemen ist die Viskosität. Die Wahl der Viskosität stellt immer einen Kompromiß dar; die Druckflüssigkeit muß dünnflüssig genug sein, um einen leichten Durchfluß zu erreichen, und dickflüssig genug, um abzudichten und einen Schmierfilm zwischen Lager und Dichtflächen zu gewährleisten. Viskositätsanforderungen sind unten aufgeführt.

Viskosität und Temperatur

Die Temperatur der Druckflüssigkeit beeinflußt die Viskosität. Allgemein gilt, daß bei steigenden Temperaturen die Druckfüssigkeit dünner wird und ihre Viskosität abnimmt. Das gegenteilige Verhalten trifft bei kalten Druckflüssigkeiten zu. Bei der Auswahl von Druckflüssigkeiten ist es wichtig, die Anfahr- und Betriebstemperatur des Hydrauliksystems zu berücksichtigen. Allgemein gilt, daß die Druckflüssigkeit dickflüssig ist, wenn das Hydrauliksystem angefahren wird. Im weiteren Einsatz steigt die Temperatur der Druckflüssigkeit bis zu einem Punkt, an dem ein Kühlsystem zugeschaltet wird. Von da an behält die Druckflüssigkeit die Temperatur bei, für die das Hydrauliksystem ausgelegt ist. Für bestehende Anwendungen kann die Zeitfolge unterschiedlich sein, weil hydraulische Systeme in vielen Umgebungen angewandt werden, die von sehr kalt bis sehr heiß reichen. Kühlsysteme können ebenfalls variieren von sehr hoch entwickelt bis einfach, so daß die Umgebungstemperatur die Einsatztemperatur beeinflussen kann. Erstausrüster, die Eaton-Hydraulik-Komponenten einsetzen, sollten Einsatztemperaturen in ihrer Systemauslegung einbeziehen und ihren Kunden die entsprechenden Empfehlungen für die Auswahl einer Druckflüssigkeit verfügbar machen.

Reinheitsklasse

Die Reinheit der Druckflüssigkeit in einem Hydrauliksystem ist äußerst wichtig. Eaton empfiehlt, daß die Druckflüssigkeit in ihren Hydraulik-Komponenten entsprechend SAE J115 einen ISO-Reinheitsgrad nach Code 18/13 beibehält. Dieser Code erlaubt ein Maximum von 2500 Schmutzteilchen pro Milliliter größer als 5 µm und ein Maximum von 80 Schmutzteilchen pro Milliliter größer als 15 µm. Wenn Komponenten unterschiedlicher Reinheitsanforderungen im gleichen System eingesetzt werden, trifft der höhere Reinheitsgrad zu.

Erstausrüster und Händler, die Eaton-Komponenten in ihren Produkten

verwenden, sollten diese Anforderungen in ihrem Systementwurf berücksichtigen. Ein allgemein anerkannter Filter-Lieferant kann die entsprechenden Filter-Informationen zur Verfügung stellen.

Wartung der Druckflüssigkeit

Die Einhaltung der korrekten Viskosität und des Reinheitsgrades einer Druckflüssigkeit ist wichtig in allen Hydrauliksystemen. Da Eaton-Hydraulik-Komponenten in einem breiten Fächer von Anwendungsarten eingesetzt werden, ist es für Eaton nicht möglich, einen Öl-Wartungsplan zu erstellen, der jede Situation berücksichtigt. Feldversuche und eine ständige Überwachung sind die einzigen Möglichkeiten, um genaue Messungen der Systemreinheit zu erzielen. Erstausrüster und Händler, die Eaton-Produkte verwenden, sollten Tests durchführen und Service-Intervalle für Ihre Produkte festlegen. Diese Wartungspläne sollten so bemessen sein, daß die Viskositäts- und Reinheitsanforderungen aus diesem Dokument berücksichtigt werden.

Auswahl der Druckflüssigkeit

Hydraulik-Flüssigkeiten auf der Basis von hochwertigem Mineralöl garantieren die besten Leistungen mit Eaton-Hydraulik-Komponenten. Diese Öle enthalten spezielle Additive, die für Hydrauliksysteme nützlich sind. Eaton empfiehlt Druckflüssigkeiten, die Stoffe gegen Verschleiß, Rost, Schäumung und Oxydation enthalten. Druckflüssigkeiten auf Mineralölbasis tragen eine VG-Kennzeichnung nach ISO.

SAE-Motorenöle können in Systemen mit Eaton-Hydraulik-Komponenten verwendet werden, es sollte aber berücksichtigt werden, daß diese Öle unter Umständen nicht alle empfohlenen Additive enthalten. Die Verwendung von Motorölen kann demnach die Service-Intervalle erhöhen.

Hydraulik-Flüssigkeiten mit V.I. (Viskositätsindex) Verbesserern, manchmal auch als Multi-Viskositätsöle bezeichnet, können in Systemen mit Eaton-Hydraulik-Komponenten verwendet werden. Diese V.I. verbessernden Druckflüssigkeiten verlieren bei ständigem Gebrauch schneller ihre ursprüngliche Qualität, d.h. die Viskosität fällt unter den klassifizierten Wert. Die Service-Intervalle müssen bei Verwendung von V.I. verbesserten Druckflüssigkeiten erhöht werden.

Synthetische Druckflüssigkeiten können in Eaton-Hydraulik-Komponenten verwendet werden. Ein anerkannter Öl-Lieferant kann Informationen über synthetische Druckflüssigkeiten verfügbar machen. Anwendungen, die die Verwendung von synthetischen Druckflüssigkeiten erforderlich machen, sind mit der zuständigen Eaton-Niederlassung abzusprechen.

	Viskosität	ISO-Reinheits-		
Motoren mit — 70 Axialverteiler-	Minimum	Optimaler Bereich	anforderung	
	70 SUS 13 cSt	100-200 SUS 20-43 cSt	18/13	

Zusätzliche Anmerkungen:

- Zu dickflüssige Druckflüssigkeiten verursachen bei Kalt-Starts Pumpenkavitation und mögliche Folgeschäden. Motor-Kavitation bei Kaltwetter-Starts ist mit Ausnahme der Zweigang-Motoren kein Problem. Dickflüssiges Öl kann hohe Gehäusedrucke verursachen, die die Wellendichtringe schädigen.
- Bei der Auswahl der Druckflüssigkeit müssen alle System-Komponenten berücksichtigt und ein entsprechender optimaler Viskositätsbereich festgelegt werden. Wenn z.B. eine Medium-Duty-Kolbenpumpe mit einem Geroler-Motor kombiniert wird, beträgt der optimale Viskositätsbereich 20 -
- 32 cSt, und die Viskosität sollte niemals unter den Wert von 13 cSt fallen.
- Falls die natürliche Farbe der Druckflüssigkeit in schwarz übergeht, ist möglicherweise ein Überhitzungsproblem vorhanden.
- Falls die Druckflüssigkeit milchig wird, könnte eine Wasser-Verunreinigung vorhanden sein.
- · Lesen Sie den Druckflüssigkeitsstand in kaltem Zustand ab.
- Spezifische Fragen über Druckflüssigkeitsanforderungen in Eaton-Hydraulik-Komponenten können mit der zuständigen Eaton-Niederlassung geklärt werden.

Anwendungsberechnungen

Schritt 1 — Berechnung der Motordrehzahl

$$n = \frac{2,65 * v * i}{r_1}$$

n = Drehzahl (1/min)

v = Fahrzeuggeschwindigkeit (km/h)

i = Getriebeübersetzung zw. Hydraulikmotor und Rad

r₁ = Dyn. Reifenhalbmesser (m)

Ohne Getriebe ist i = 1

Zur Umrechnung von der Geschwindigkeit von m/s in km/h gilt der Faktor 3,6.

Schritt 2 — Bestimmung des Rollwiderstandes Der Rollwiderstand F_R ist die Zugkraft, die erforderlich ist, um ein Fahrzeug auf einem bestimmten Untergrund anzutreiben. Die Werte der Rollwiderstandskoeffizienten für verschiedene Untergründe sind in Tabelle 1 dargestellt.

$$F_{R} = m * \rho * 9,81$$

F_R = Zugkraft durch Rollwiderstand (N)
 m = Fahrzeug-Gesamtgewicht (kg)
 r = Rollwiderstandskoeffizient (Tabelle 1)

Tabelle 1 - Rollwiderstandskoeffizient für Gummibereifung auf verschiedenen Broden beschaffen heiten

Oberfläche	ρ
Beton, hevorragend	0,010
Beton, gut	0,015
Beton, schlecht	0,020
Asphalt, gut	0,012
Asphalt, mittelmäßig	0,017
Asphalt, schlecht	0,022
Split, gut	0,015
Split, mittelmäßig	0,022
Split, schlecht (Schotter)	0,037
Kopfsteinpflaster, normal	0,055
Kopfsteinpflaster, schlecht	0,037
Schnee, 5 cm hoch	0,025
Schnee, 10 cm hoch	0,037
Verschmutzte Oberfläche, weich	0,025
Verschmutzte Oberfläche, sandig	g 0,037
Schlamm	0,037 bis 0,150
Sand, eben und weich	0,060 bis 0,150
Sand, Düne	0,160 bis 0,300

Schritt 3 — Berechnung des Steigvermögens Der Steigungswiderstand F_G ist diejenige Kraft, die erforderlich ist, um ein Fahrzeug hochzufahren. Die größtmögliche Steigung bezeichnet man als Steigvermögen des Fahrzeugs. Eine Steigung wird üblicherweise in Prozent und nicht in Winkelgarden ausgedrückt. Ein Anstieg von 1m auf 10m Länge entspricht einer Steigung von 1/10 oder 10%.

$$F_G = 9.81 * m * (\sin \alpha + \rho * \cos a)$$

F_G = Steigungswiderstand (N)

S = Steigung (%)

m = Fahrzeug-Gesamtgewicht (kg)

a = Steigungswinkel

Tabelle 2 - Vergleichstabelle Steigung

3	9
Prozent	Grad
S (%)	α (°)
1%	0°35'
2%	1° 9'
5%	2°51'
6%	3°26'
8%	4°35'
10%	5°43'
12%	6°5'
15%	8°31'
20%	11°19'
25%	14° 3'
32%	18°
60%	31°

Schritt 4 — Ermittlung der Beschleunigungskraft (F_A) Die Kraft (F_A), die erforderlich ist, um in einer bestimmten Zeit t (in Sekunden) aus dem Stand bis auf Höchstgeschwindigkeit zu beschleunigen, kann mit der folgenden Gleichung ermittelt werden:

$$F_A = \frac{v * m}{3.6 * t}$$

FA = Beschleunigungskraft (N) v = Geschwindigkeit (km/h) m = Fahrzeug-Gesamtgewicht (kg)

t = Zeit(s)

Schritt 5 — Bestimmung der Anhänger-

Deichselzugkraft (FD)

Die Deichselzugkraft ist die Gesamtkraft, die nach Abzug obiger Kräfte von der Gesamtantriebskraft, die von den Hydraulikmotoren erzeugt wird, an der Anhängerdeichsel zur Verfügung steht. Dieser Wert wird festgelegt als:

- 1. Vorgabe des Konstrukteurs.
- 2. Kraft, die zum Ziehen eines Anhängers notwendig ist (Die Schritte 2 bis 4 sind mit dem Anhänger-Gesamtgewicht zu wiederholen).

Schritt 6 — Gesamtzugkraft

Die Zugkraft F_F ist die Gesamtkraft, die notwendig ist, um das Fahrzeug anzutreiben. Sie ergibt sich aus der Summe der Kräfte aus den Rechenschritten 2 bis 5.

$$F_E = F_R + F_G + F_A + F_D$$

F_E = Gesamtzugkraft (N)

F_R = Zugkraft durch Rollwiderstand

F_G = Steigungswiderstand

F_A = Beschleunigungskraft

F_D = Anhängerdeichselkraft

Der Widerstand durch Wind kann im allgeminen vernachlässigt werden. Es kann jedoch ratsam sein, zu obiger Summe 10% hinzuzufügen, um Anfahrwiderstände zu berücksichtigen, die durch Reibung in Lagern und anderen mechanischen Komponenten verursacht werden.

Schritt 7 — Ermittlung des Motordrehmomentes (T_M)

$$T_{M} = \frac{F_{E} * r_{1}}{N * i}$$

 $T_M = Motordrehmoment (Nm)$

 F_E = Gesamtzugkraft (N) r_1 = Dynamischer Reifenhalbmesser (m)

N = Anzahl Motoren

= Getriebeübersetzung

Schritt 8 — Radschlupf

Ist das für den Radschlupf erforderliche Drehmoment Ts kleiner als das in Schritt 7 errechnete Drehmoment, können die gewünschten Leistungsdaten nicht erreicht werden.

$$T_S = \frac{m_A * \eta * r_1 * 9,81}{i}$$

 T_S = Drehmoment bei Schlupf (Nm)

 m_A = Gewicht auf getriebenem Rad (kg)

 r_1 = Dyn. Reifenhalbmesser (m)

η = Kraftschlußkoeffizient (siehe Tabelle 2)

Getriebeübersetzung.

$$\begin{array}{lll} \text{Tabelle 3 -Kraftschlußkoeffizient} & \eta \\ \text{Stahl auf Stahl} & 0,3 \\ \text{Gummireifen auf weichem Untergrund} & 0,5 \\ \text{Gummireifen auf hartem Untergrund} & 0,6 \text{ bis 0,8} \\ \text{Gummireifen auf Beton} & 0,7 \end{array}$$

Es kann erwünscht sein, zur Vermeidung von Überhitzung des Hydrauliksystems einen Radschlupf zuzulassen. In diesem Fall sollte Ts geringfügig oberhalb von T_M liegen.

Schritt 9 — Radialbelastung des Motors Wird für einen Fahrzeugantrieb das Rad direkt auf der Welle bzw. der Nabe des Hydraulikmotors montiert, ist die Radialbelastung gleich der Vektorsumme zweier Kräfte, die im rechten Winkel zueinander wirken

$$RL = \sqrt{m_A^2 + \left(\frac{T_M}{r_1}\right)^2}$$

Tabellen und Grafiken der zul. Radialbelastungen zu jedem Motortyp (siehe Inhaltverzeichnis auf Seite 10).

Drehmoment Abtriebswelle

$$T_{M} = \frac{p * V_{g}}{62.8 * \eta_{mh}} [Nm]$$

Drehzahl Abtriebswelle

$$^{n}M = \frac{Q * 1000}{V_{q}} [1/min]$$

Eingangsleistung

$$P_{E} = \frac{\Delta p * Q}{600 * \eta_{t}} [kW]$$

Ausgangsleistung

$$P_A = \frac{T * n}{9550} [kW]$$

P = Leistung (KW)

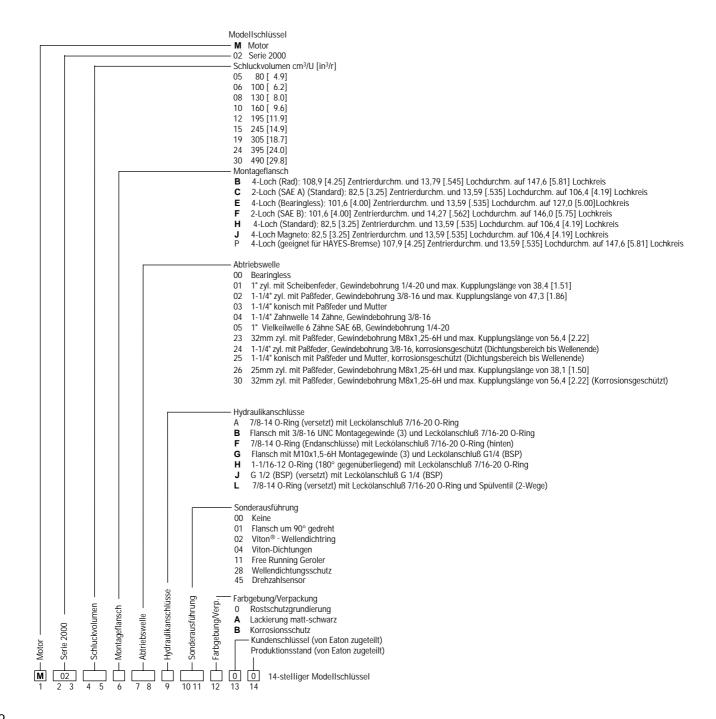
Q = Schluckstrom (I/min)

Vg = Geometrisches Fördervolumen (cm³) pro Umdr.

 $\Delta p = Druck (bar) Differenzdruck$

T = Drehmoment (Nm)

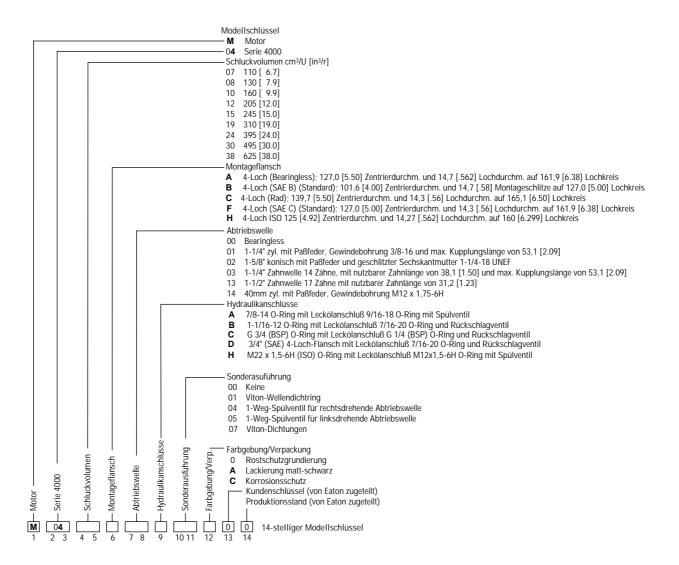
n = Drehzahl (1/min)


ηm = Mech.-hydr. Wirkungsgrad

nt = Gesamtwirkungsgrad

Bestellhinweise

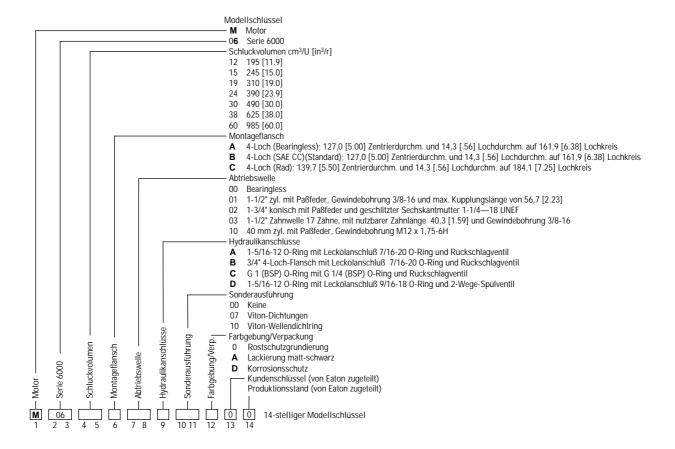
Bereits vorhandene Bestellnummern für gängige Motoren der Serie 2000 sind der Aufstellung auf Seite 27 zu entnehmen oder mit Hilfe der elektronischen Preisliste (Price Finder) zu ermitteln. Sollte die Produktnummer für eine bestimmte Motorkonfiguration dort nicht aufgeführt sein, kann für die Bestellung dieses spezifischen Motors der untenstehende Modellschlüssel benutzt werden. Bei Verwendung des Modellschlüssels ist darauf zu achten, daß alle 14 Stellen des Modellcodes für den jeweiligen Motor angegeben werden.



Bestellhinweise

Bereits vorhandene Bestellnummern für gängige Motoren der Serie 4000 sind der Aufstellung auf Seite 39 zu entnehmen oder mit Hilfe der elektronischen Preisliste (Price Finder) zu ermitteln. Sollte die Produktnummer für eine bestimmte Motorkonfiguration dort nicht aufgeführt sein, kann für die Bestellung dieses spezifischen Motors der untenstehende Modellschlüssel benutzt werden.

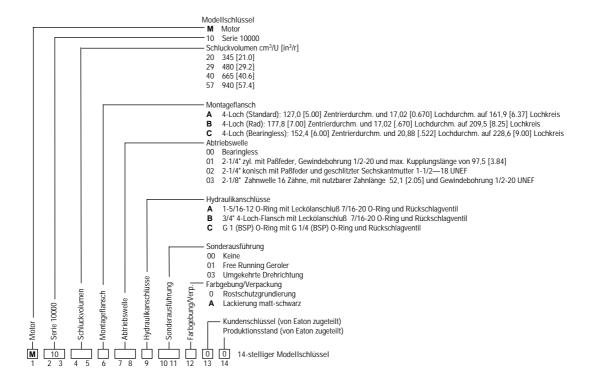
Bei Verwendung des Modellschlüssels ist darauf zu achten, daß alle 14 Stellen des Modellcodes für den jeweiligen Motor angegeben werden.

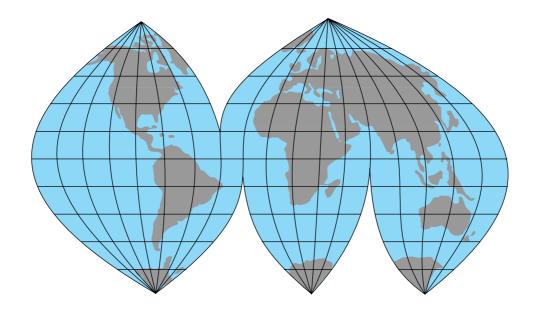


Bestellhinweise

Bereits vorhandene Bestellnummern für gängige Motoren der Serie 10000 sind der Aufstellung auf Seite 49 zu entnehmen oder mit Hilfe der elektronischen Preiliste (Price Finder) zu ermitteln. Sollte die Produktnummer für eine bestimmte Motorkonfiguration dort nicht aufgeführt sein, kann für die Bestellung dieses spezifischen Motors der untenstehende Modellschlüssel benutzt werden.

Bei Verwendung des Modellschlüssels ist darauf zu achten, daß alle 14 Stellen des Modellcodes für den jeweiligen Motor angegeben werden.





Bestellhinweise

Bereits vorhandene Bestellnummern für gängige Motoren der Serie 10000 sind der Aufstellung auf Seite 59 zu entnehmen oder mit Hilfe der elektronischen Preisliste (Price Finder) zu ermitteln. Sollte die Produktnummer für eine bestimmte Motorkonfiguration dort nicht aufgeführt sein, kann für die Bestellung dieses spezifischen Motors der untenstehende Modellschlüssel benutzt werden.

Bei Verwendung des Modellschlüssels ist darauf zu achten, daß alle 14 Stellen des Modellcodes für den jeweiligen Motor angegeben werden.

Eaton Hydraulics Division — Weltweiter Kundenservice

5 Produktionswerke — Eden Prairie, Minnesota/USA

Spencer, Iowa/USA Shawnee, Oklahoma/USA Hutchinson, Kansas/USA Glenrothes, Scotland

Vertriebs und Kundendienstzentrale — Glenrothes, Scotland Joint Venture — Sehyco — Kameoka, Japan

Joint Venture — China

Weltweites Vertragshändlernetz — In 40 Ländern

Eaton Corporation Hydraulics Division 15151 Hwy. 5 Eden Prairie, MN 55344 Telephone 612/937-9800 Fax 612/937-7130 Eaton Ltd. Hydraulics Division Glenrothes, Fife Scotland, KY7 4NW Telephone 01-592-771-771 Fax 01-592-773-184 Eaton GmbH Hydraulics Products Am Schimmersfeld 7 40880 Ratingen, Germany Telephone 02102-406-830 Fax 02102-406-800

Quality System Certified Products in this catalog are manufactured in an ISO-9001-certified site.

http://www.eaton.com

